Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922295

ABSTRACT

The broad applications of ion mobility spectrometry (IMS) demand good sensitivity and resolving power for ion species with different reduced mobilities (K0). In this work, a new Tyndall-Powell gate (TPG) gating method for combining ion enrichment, mobility discrimination reduction, and temporal compression into a single gating process is proposed to improve IMS analysis performance. The two-parallel-grid structure and well-confined gate region of the TPG make it convenient to spatiotemporally vary the electric fields within and around the gate region. Under the new gating method, a potential wave is applied on TPG grid 1 to enrich ions within the ionization region adjacent to the TPG during the gate-closed state; meanwhile, a potential wave is applied on TPG grid 2 to enhance mobility discrimination reduction and temporal compression simultaneously during the gate-open state. For triethyl phosphate (TEP) and dimethyl methylphosphonate mixtures, product ion peaks within K0 of 1.9 to 1.1 cm2/V·s exhibit a 19-fold increase in ion current compared to the traditional TPG gating method, while maintaining a resolving power of 85. The estimated limit of detection for the TEP dimer is lowered from 8 ppb to 135 ppt. The new gating method can be applied to other TPG-based IMS systems to enhance their performance in analyzing complex samples.

2.
Anal Chem ; 96(9): 3979-3987, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38391328

ABSTRACT

Photoionization (PI) is an efficient ionization source for ion mobility spectrometry (IMS) and mass spectrometry. Its hyphenation with IMS (PI-IMS) has been employed in various on-site analysis scenarios targeting a wide range of compounds. However, the signal intensity and linear dynamic range of PI-IMS at ambient pressure usually do not follow the Beer-Lambert law predictions, and the factors causing that negative deviation remain unclear. In this work, a variable pressure PI-IMS system was developed to examine the ion loss effects from factors like ion recombination and space charge by varying its working pressure from 1 to 0.1 bar. Assisted by theoretical modeling, it was found that ion recombination could contribute up to 90% of signal intensity loss for ambient pressure PI-IMS setups. Lowering the pressure and increasing the electric field in PI-IMS helped suppress the ion recombination process and thus an optimal pressure Poptimal appeared for best signal intensity, despite the decreased net ion number density and the increased space charge effect. A simplified theoretical equation taking ion recombination as the primary ion loss factor was derived to link Poptimal with analyte concentration and electric field in PI-IMS, enabling a swift optimization of the PI-IMS performance. For example, compared to ambient pressure, PI-IMS at a Poptimal of 0.4 bar provided a signal intensity increment of more than 400% for 0.716 ppmv toluene and also expanded the linear dynamic range by more than two times. Revealing factors influencing the PI-IMS response would also benefit the applications of other chemical ionization sources in IMS or mass spectrometry (MS).

3.
Phytomedicine ; 109: 154556, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610149

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders among women, and the curative effects of its current management are not satisfactory. A formula of Chinese herbal medicine (CHM), called Bu-Shen-Tian-Jing Formula (BSTJF), has clinically shown beneficial effects in treating PCOS. PURPOSE: This study aimed to investigate the mechanism underlying BSTJF for treatment of PCOS. METHODS: Whole blood samples were collected from women with PCOS treated and not treated with BSTJF (n = 5 per group). Whole transcriptome sequencing of leukocytes and untargeted metabonomic analysis of the plasma were performed. Three groups of 18 female Sprague-Dawley rats were randomly selected: control, PCOS, and BSTJF. A PCOS rat model was established using testosterone propionate. The estrous cycle; glucose tolerance; ovarian morphology; serum markers of oxidative stress; and expression of Sirtuin 3 (SIRT3), phospho-p38 mitogen-activated protein kinase, phosphatidylinositol 3-kinase (PI3K), and phospho-protein kinase B in the ovary were measured. Palmitate was initially applied to KGN cells, followed by freeze-dried BSTJF powder. The glucose uptake, reactive oxygen species (ROS) production, and protein levels of SIRT3, PI3K, and glucose transporter type 4 (GLUT4) were detected in KGN cells. RESULTS: The transcriptomic and metabolomic profiles showed alterations in 572 genes and 73 metabolites in women with PCOS treated with BSTJF. The enriched pathways in women with PCOS treated with BSTJF were mainly involved in inflammation, insulin resistance, glucose and lipid metabolism, and neuro and associated signaling pathways. In PCOS rat models, BSTJF improved the estrous cycle, glucose tolerance, and ovarian morphology; relieved oxidative stress; increased ovarian SIRT3 expression; inhibited p38 MAPK activation; and promoted the activation of PI3K/AKT signaling in the ovary. In the in-vitro study with KGN cells, BSTJF rescued the palmitate-induced impaired glucose uptake and SIRT3 expression, reduced mitochondrial ROS production mediated by SIRT3, and restored the impaired insulin-induced PI3K/AKT signaling pathway. CONCLUSION: BSTJF effectively alleviated the pathogenesis of PCOS by improving oxidative stress and glucose metabolism via mitochondrial SIRT3 and the following insulin signaling pathway. This study innovatively revealed the action mechanism of CHM in treating PCOS.


Subject(s)
Drugs, Chinese Herbal , Insulin Resistance , Polycystic Ovary Syndrome , Sirtuin 3 , Humans , Female , Rats , Animals , Polycystic Ovary Syndrome/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Sirtuin 3/metabolism , Drugs, Chinese Herbal/therapeutic use , Reactive Oxygen Species , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Signal Transduction , Oxidative Stress , Insulin/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Glucose/metabolism
4.
Free Radic Biol Med ; 187: 1-16, 2022 07.
Article in English | MEDLINE | ID: mdl-35594990

ABSTRACT

Mitochondrial function and glucose metabolism play important roles in bidirectional signaling between granulosa cells (GCs) and oocytes. However, the factors associated with mitochondrial function and glucose metabolism of GCs in polycystic ovary syndrome (PCOS) are poorly understood, and their potential downstream effects on oocyte quality are still unknown. The aim of this study was to investigate whether there are alterations in mitochondrial-related functions and glucose metabolism in ovarian GCs of women with PCOS and the role of Sirtuin 3 (SIRT3) in this process. Here, we demonstrated that women with PCOS undergoing in vitro fertilization and embryo transfer had significantly lower rates of metaphase II oocytes, two-pronuclear fertilization, cleavage, and day 3 good-quality embryos. Germinal vesicle- and metaphase I-stage oocytes from women with PCOS exhibited increased mitochondrial reactive oxygen species (ROS), decreased mitochondrial membrane potential, and downregulation of glucose-6-phosphate dehydrogenase. GCs from women with PCOS presented significant alterations in mitochondrial morphology, amount, and localization, decreased membrane potential, reduced adenosine triphosphate (ATP) synthesis, increased mitochondrial ROS and oxidative stress, and insufficient oxidative phosphorylation (OXPHOS) together with decreased glycolysis. SIRT3 expression was significantly decreased in GCs of PCOS patients, and knockdown of SIRT3 in KGN cells could mimic the alterations in mitochondrial functions and glucose metabolism in PCOS GCs. SIRT3 knockdown changed the acetylation status of NDUFS1, which might induce altered mitochondrial OXPHOS, the generation of mitochondrial ROS, and eventually defects in the cellular insulin signaling pathway. These findings suggest that SIRT3 deficiency in GCs of PCOS patients may contribute to mitochondrial dysfunction, elevated oxidative stress, and defects in glucose metabolism, which potentially induce impaired oocytes in PCOS.


Subject(s)
Polycystic Ovary Syndrome , Sirtuin 3/pharmacokinetics , Female , Glucose/metabolism , Granulosa Cells/metabolism , Humans , Mitochondria/genetics , Mitochondria/metabolism , Oocytes/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism
5.
J Am Chem Soc ; 143(32): 12867-12877, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34353027

ABSTRACT

Ag2Te is one of the most promising semiconductors with a narrow band gap and low toxicity; however, it remains a challenge to tune the emission of Ag2Te quantum dots (QDs) precisely and continuously in a wide range. Herein, Ag2Te QDs emitting from 950 to 2100 nm have been synthesized via trialkylphosphine-controlled growth. Trialkylphosphine has been found to induce the dissolution of small-sized Ag2Te QDs due to its stronger ability to coordinate to the Ag ion than that of 1-octanethiol, predicated by the density functional theory. By controlling this dissolution effect, the monomer supply kinetics can be regulated, achieving precise size control of Ag2Te QDs. This synthetic strategy results in state-of-the-art silver-based QDs with emission tunability. Only by taking advantage of such an ultrawide emission has the sizing curve of Ag2Te been obtained. Moreover, the absolute photoluminescence quantum yield of Ag2Te QDs can reach 12.0% due to their well-passivated Ag-enriched surface with a density of 5.0 ligands/nm2, facilitating noninvasive in vivo fluorescence imaging. The high brightness in the long-wavelength near-infrared (NIR) region makes the cerebral vasculature and the tiny vessel with a width of only 60 µm clearly discriminable. This work reveals a nonclassical growth mechanism of Ag2Te QDs, providing new insight into precisely controlling the size and corresponding photoluminescence properties of semiconductor nanocrystals. The ultrasmall, low-toxicity, emission-tunable, and bright NIR-II Ag2Te QDs synthesized in this work offer a tremendous promise for multicolor and deep-tissue in vivo fluorescence imaging.

6.
BMC Pregnancy Childbirth ; 21(1): 557, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34391385

ABSTRACT

BACKGROUND: Maternal polycystic ovary syndrome (PCOS) has potential detrimental effects on the neurodevelopment of offspring. This study aimed to evaluate the brain metrics in fetuses of women with PCOS based on fetal magnetic resonance imaging (MRI). METHODS: This retrospective study included 60 pregnant women with PCOS (PCOS group) and 120 pregnant non-PCOS women (control group). Fetal MRI was performed followed an ultrasound and for numerous clinical indications including known or suspected fetal pathology, history of fetal abnormality in previous pregnancy or in a family member. Fetal brain biometry and apparent diffusion coefficient (ADC) value were analysed. RESULTS: After adjusting for potential confounders, fetuses in the PCOS group showed the following characteristics compared to fetuses in the control group: (1) smaller cerebral fronto-occipital diameter (FOD), vermian height (VH) and anteroposterior diameter of the pons (APDP) (evident before 32 weeks; P = 0.042, P = 0.002 and P = 0.016, respectively); (2) larger left and right biparietal index (evident before 32 weeks; P = 0.048 and P = 0.025, respectively); (3) smaller left lateral ventricle (LV) (evident after 32 weeks; P = 0.005); (4) larger anteroposterior diameter of the vermis (APDV) and hippocampal infolding angle (HIA) (evident after 32 weeks; P = 0.003 and P < 0.001, respectively); (5) higher ADC value in frontal white matter (FWM) and in basal ganglia (BG) (evident before and after 32 weeks; all P < 0.05). CONCLUSIONS: There exist a different pattern of brain metrics in PCOS offspring in utero.


Subject(s)
Brain/physiopathology , Fetus/physiopathology , Polycystic Ovary Syndrome/complications , Brain/diagnostic imaging , China , Female , Fetus/diagnostic imaging , Gestational Age , Humans , Magnetic Resonance Imaging , Pregnancy , Retrospective Studies
7.
Integr Med Res ; 9(3): 100449, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32632357

ABSTRACT

BACKGROUND: During the COVID-19 epidemic period, Traditional Chinese Medicine (TCM) course for international students of Medical Bachelor, Bachelor of Surgery (MBBS) program in Zhejiang University has shifted from traditional classroom to online environment. This study aimed to investigate MBBS international students' perception on online TCM course, and to assess the online learning efficacy. METHODS: A total of 84 MBBS international students attending course of "Basic Traditional Chinese Medicine" during 2020 academic years at Zhejiang University were enrolled in this study. A quantitative questionnaire was respectively completed before and after the TCM course using a pretest-post-test design. By means of two online learning platforms, Learning in ZJU and DingTalk, TCM course was broadcast in both live and archived format to students. RESULTS: A total of 48 participants completed both baseline and follow-up questionnaires. The majority of participants preferred face-to-face classroom learning (26, 54.17% of total) when compared with online learning. Students felt that the course had brought in much benefits (mean 3.88, SD 0.87), and they were satisfied with the course content (mean 3.83, SD 0.95). Students' TCM related knowledge and their behaviors of discussion and consulting were significantly improved by online TCM course (all P < 0.001). Students' awareness of the necessity of TCM education and their feeling of difficulty in learning TCM were significantly strengthened (P = 0.042, 0.025, respectively). CONCLUSION: Online learning is a good alternative for TCM course of MBBS international students when classroom learning is suspended, whereas it cannot replace the need for onsite and face-to-face learning.

8.
J Zhejiang Univ Sci B ; 21(12): 977-989, 2020.
Article in English | MEDLINE | ID: mdl-33843163

ABSTRACT

OBJECTIVE: Polycystic ovary syndrome (PCOS), a common endocrine-metabolic dysfunction in reproductive-aged women, may be involved in compromised pregnancy and offspring outcomes. This study aimed to investigate whether maternal PCOS affects fetal growth, fetal development, and placental features. METHODS: This retrospective case-control study included 60 pregnant women with PCOS (PCOS group) and 120 healthy pregnant women without PCOS (control group). Fetal magnetic resonance imaging (MRI) was performed followed by an ultrasound examination and indications for imaging, including known or suspected fetal pathology, history of fetal abnormality in previous pregnancy or in a family member, and concern for placenta accreta. Fetal MRI images were analyzed for head circumference (HC), abdomen circumference (AC), lung-to-liver signal intensity ratio (LLSIR, a prenatal marker of fetal lung maturity), lengths of liver and kidney diameters in fetuses, and placental relative signal intensity on T2-weighted single-shot fast spin echo (SSFSE) imaging (rSISSFSE), and placental relative apparent diffusion coefficient value (rADC). Data on height and weight of offspring were collected through telephone follow-up. RESULTS: Compared to the control group, the PCOS group showed the following characteristics: (1) smaller biparietal diameter and femur length in fetuses (P=0.026 and P=0.005, respectively), (2) smaller HC in fetuses (evident after 32 weeks; P=0.044), (3) lower LLSIR and smaller dorsoventral length of liver in fetuses (evident before 32 weeks; P=0.005 and P=0.019, respectively), and (4) smaller placental thickness (evident before 32 weeks; P=0.017). No significant differences in placental rSISSFSE or rADC were observed between the groups (all P>0.05). No significant differences in height and weight of offspring during childhood existed between the groups (all P>0.05). CONCLUSIONS: There exist alterations of fetal growth, fetal development, and placental features from women with PCOS.


Subject(s)
Fetal Development/physiology , Magnetic Resonance Imaging/methods , Placenta/diagnostic imaging , Polycystic Ovary Syndrome/physiopathology , Pregnancy Complications/physiopathology , Adult , Child Development , Child, Preschool , Female , Humans , Male , Polycystic Ovary Syndrome/diagnostic imaging , Pregnancy , Pregnancy Complications/diagnostic imaging , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...