Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Curr Oncol ; 30(3): 2625-2641, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36975413

ABSTRACT

Regional lymph node metastasis (LNM) increases the risk of distant metastasis in papillary thyroid cancer (PTC) patients. However, it remains unclear how tumor cells in PTC patients with LNM evade immune system surveillance and proceed to colonize distant organs. Here, we comprehensively characterize the tumor-infiltrating immune cell landscape in PTC with LNM. LNM-related genes include multiple important soluble mediators such as CXCL6, IL37, MMP10, and COL11A1, along with genes involved in areas such as extracellular matrix organization and TLR regulation by endogenous ligands. In PTC without LNM, the tumor infiltration of activated dendritic cells and M0 macrophages showed increases from normal cells, but with yet greater increases and correspondingly worse prognosis in PTC with LNM. Conversely, the tumor infiltration of activated NK cells and eosinophils was decreased in PTC without LNM, as compared to normal cells, and yet further decreased in PTC with LNM, with such decreases associated with poor prognosis. We further demonstrate that mutations of driver genes in tumor cells influence the infiltration of surrounding immune cells in the tumor microenvironment (TME). Particularly, patients carrying TG mutations tend to show increased filtration of M2 macrophages and activated NK cells in the TME, whereas patients carrying HRAS mutations tend to show reduced filtration of M0 macrophages and show enhanced filtration of activated dendritic cells in the TME. These findings increase our understanding of the mechanisms of regional lymph node metastasis in PTC and its associated tumor microenvironment, potentially facilitating the development of personalized treatment regimens to combat immunotherapy failure.


Subject(s)
Carcinoma, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Lymphatic Metastasis , Carcinoma, Papillary/genetics , Carcinoma, Papillary/pathology , Prognosis , Tumor Microenvironment , Interleukin-1
3.
Cell Death Dis ; 13(10): 877, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36257938

ABSTRACT

Long non-coding RNAs (lncRNAs) is known to play vital roles in modulating tumorigenesis. We previously reported that LCAT1, a novel lncRNA, promotes the growth and metastasis of lung cancer cells both in vitro and in vivo. However, the underlying mechanism(s) of LCAT1 as an oncogenic regulator remains elusive. Here, we showed that LCAT1 physically interacts with and stabilizes IGF2BP2, an m6A reader protein, by preventing its degradation via autolysosomes. IGF2BP2 is overexpressed in lung cancer tissues, which is associated with poor survival of non-small cell lung cancer patients, suggesting its oncogenic role. Biologically, IGF2BP2 depletion inhibits growth and survival as well as the migration of lung cancer cells. Mechanistically, the LCAT1/IGF2BP2 complex increased the levels of CDC6, a key cell cycle regulator, by stabilizing its mRNA in an m6A-dependent manner. Like IGF2BP2, CDC6 is also overexpressed in lung cancer tissues with poor patient survival, and CDC6 knockdown has oncogenic inhibitory activity. Taken together, the LCAT1-IGF2BP2-CDC6 axis appears to play a vital role in promoting the growth and migration of lung cancer cells, and is a potential therapeutic target for lung cancer. Importantly, our finding also highlights a previously unknown critical role of LCAT1 in m6A-dependent gene regulation by preventing autolytic degradation of IGF2BP2.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Cell Proliferation/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Line, Tumor , Carcinogenesis/genetics , RNA, Messenger , Nuclear Proteins/metabolism , Cell Cycle Proteins/metabolism , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...