Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(19): e2301128, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37096835

ABSTRACT

Electronic sensors play important roles in various applications, such as industry and environmental monitoring, biomedical sample ingredient analysis, wireless networks and so on. However, the sensitivity and robustness of current schemes are often limited by the low quality-factors of resonators and fabrication disorders. Hence, exploring new mechanisms of the electronic sensor with a high-level sensitivity and a strong robustness is of great significance. Here, a new way to design electronic sensors with superior performances based on exotic properties of non-Hermitian topological physics is proposed. Owing to the extreme boundary-sensitivity of non-Hermitian topological zero modes, the frequency shift induced by boundary perturbations can show an exponential growth trend with respect to the size of non-Hermitian topolectrical circuit sensors. Moreover, such an exponential growth sensitivity is also robust against disorders of circuit elements. Using designed non-Hermitian topolectrical circuit sensors, the ultrasensitive identification of the distance, rotation angle, and liquid level is further experimentally verified with the designed capacitive devices. The proposed non-Hermitian topolectrical circuit sensors can possess a wide range of applications in ultrasensitive environmental monitoring and show an exciting prospect for next-generation sensing technologies.

2.
Research (Wash D C) ; 2021: 9793071, 2021.
Article in English | MEDLINE | ID: mdl-34396137

ABSTRACT

Quantum search algorithm, which can search an unsorted database quadratically faster than any known classical algorithms, has become one of the most impressive showcases of quantum computation. It has been implemented using various quantum schemes. Here, we demonstrate both theoretically and experimentally that such a fast search algorithm can also be realized using classical electric circuits. The classical circuit networks to perform such a fast search have been designed. It has been shown that the evolution of electric signals in the circuit networks is analogies of quantum particles randomly walking on graphs described by quantum theory. The searching efficiencies in our designed classical circuits are the same to the quantum schemes. Because classical circuit networks possess good scalability and stability, the present scheme is expected to avoid some problems faced by the quantum schemes. Thus, our findings are advantageous for information processing in the era of big data.

SELECTION OF CITATIONS
SEARCH DETAIL
...