Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Fundam Res ; 4(3): 624-634, 2024 May.
Article in English | MEDLINE | ID: mdl-38933183

ABSTRACT

The pursuit of compact and integrated devices has stimulated a growing demand for multifunctional sensors with rapid and accurate responses to various physical parameters, either separately or simultaneously. Fluorescent fiber sensors have the advantages of robust stability, light weight, and compact geometry, enabling real-time and noninvasive signal detection by monitoring the fluorescence parameters. Despite substantial progress in fluorescence sensors, achieving multifunctional sensing in a single optical fiber remains challenging. To solve this problem, in this study, we present a bottom-up strategy to design and fabricate thermally drawn multifunctional fiber sensors by incorporating functional nanocrystals with temperature and pressure fluorescence responses into a transparent glass matrix. To generate the desired nanocrystal-in-glass composite (NGC) fiber, the fluorescent activators, incorporated nanocrystals, glassy core materials, and cladding matrix are rationally designed. Utilizing the fluorescence intensity ratio technique, a self-calibrated fiber sensor is demonstrated, with a bi-functional response to temperature and pressure. For temperature sensing, the NGC fiber exhibits temperature-dependent near-infrared emission at temperatures up to 573 K with a maximum absolute sensitivity of 0.019 K-1. A pressure-dependent upconversion emission is also realized in the visible spectral region, with a linear slope of -0.065. The successful demonstration of multifunctional NGC fiber sensors provides an efficient pathway for new paradigms of multifunctional sensors as well as a versatile strategy for future hybrid fibers with novel combinations of magnetic, optical, and mechanical properties.

2.
Int J Cancer ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738976

ABSTRACT

The primary objective of this study is to develop a prediction model for peritoneal metastasis (PM) in colorectal cancer by integrating the genomic features of primary colorectal cancer, along with clinicopathological features. Concurrently, we aim to identify potential target implicated in the peritoneal dissemination of colorectal cancer through bioinformatics exploration and experimental validation. By analyzing the genomic landscape of primary colorectal cancer and clinicopathological features from 363 metastatic colorectal cancer patients, we identified 22 differently distributed variables, which were used for subsequent LASSO regression to construct a PM prediction model. The integrated model established by LASSO regression, which incorporated two clinicopathological variables and seven genomic variables, precisely discriminated PM cases (AUC 0.899; 95% CI 0.860-0.937) with good calibration (Hosmer-Lemeshow test p = .147). Model validation yielded AUCs of 0.898 (95% CI 0.896-0.899) and 0.704 (95% CI 0.622-0.787) internally and externally, respectively. Additionally, the peritoneal metastasis-related genomic signature (PGS), which was composed of the seven genes in the integrated model, has prognostic stratification capability for colorectal cancer. The divergent genomic landscape drives the driver genes of PM. Bioinformatic analysis concerning these driver genes indicated SERINC1 may be associated with PM. Subsequent experiments indicate that knocking down of SERINC1 functionally suppresses peritoneal dissemination, emphasizing its importance in CRCPM. In summary, the genomic landscape of primary cancer in colorectal cancer defines peritoneal metastatic pattern and reveals the potential target of SERINC1 for PM in colorectal cancer.

3.
Ther Adv Med Oncol ; 15: 17588359231217966, 2023.
Article in English | MEDLINE | ID: mdl-38152696

ABSTRACT

Background: Epigenetic mechanisms play vital roles in the activation, differentiation, and effector function of immune cells. The breast and kidney-expressed chemokine (CXCL14) mainly contributes to the regulation of immune cells. However, its role in shaping the tumor immune microenvironment (TIME) is yet to be elucidated in renal cell carcinoma (RCC). Objectives: This study aimed to elucidate the role of CXCL14 in predicting the efficacy of immunotherapy in patients with RCC. Methods: CXCL14 expression and RNA-sequencing, single-cell RNA-sequencing (scRNA-seq), and survival datasets of RCC from public databases were analyzed, and survival was compared between different CXCL14 levels. The correlation between CXCL14 and immune infiltration and human leukocyte antigen (HLA) gene expression was analyzed with TIMER2.0 and gene expression profiling interactive analysis. Institutional scRNA-seq and immunohistochemical staining analyses were used to verify the relationship between CXCL14 expression level and the efficacy of immunotherapy. Results: CXCL14 was expressed in fibroblast and malignant cells in RCC, and higher expression was associated with better survival. Enrichment analysis revealed that CXCL14 is involved in immune activation, primarily in antigen procession, antigen presentation, and major histocompatibility complex assemble. CXCL14 expression was positively correlated with T-cell infiltration as well as HLA-related gene expression. Among the RCC cohort receiving nivolumab in Checkmate 025, the patients with CXCL14 high expression had better overall survival than those with CXCL14 low expression after immunotherapy. scRNA-seq revealed a cluster of CXCL14+ fibroblast in immunotherapy responders. Immunohistochemistry analysis verified that the patients with high CXCL14 expression had an increased proportion of high CD8 expression simultaneously. The expression level of CXCL14 was associated with CXCR4 expression in RCC. Conclusion: CXCL14 expression is associated with immunotherapy response in RCC. It is a promising biomarker for immunotherapy response prediction and may be an effective epigenetic modulator in combination with immunotherapy approaches.


CXCL14 as potential predictor for immunotherapy response in kidney cancer Kidney-expressed chemokine (CXCL14) regulates immune cells. We studied how it affects the body's immune response to kidney cancer based on public and private database and staining. We found that higher levels of CXCL14 in kidney cancer were linked to better patient survival. CXCL14 seems to help activate the immune system. When patients with high CXCL14 levels received immunotherapy, they tended to survive longer than those with low levels. Fibroblasts with CXCL14 were present in patients responding to immunotherapy. Further tests confirmed that high CXCL14 levels were related to more immune cells. CXCR4 may be its receptor in kidney cancer. This suggests that measuring CXCL14 levels could help predict how well a patient might respond to immunotherapy for kidney cancer.

4.
Clin Cancer Res ; 28(21): 4807-4819, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36074152

ABSTRACT

PURPOSE: Fumarate hydratase-deficient renal cell carcinoma (FHRCC) is highly malignant, but the urgent need for effective treatment remains unmet. We aimed to analyze the genomic characteristics and microenvironment of FHRCC and the cause of heterogeneous response to immune checkpoint inhibitor (ICI)-based treatment at single-cell level. EXPERIMENTAL DESIGN: Whole-exome sequencing and IHC staining analyses were performed in 30 advanced FHRCC patients. Single-cell RNA sequencing following ICI-based treatment was conducted in 4 patients. The clinical characteristics, therapeutic effect, and follow-up data were analyzed. RESULTS: The median tumor mutation burden was only 0.14 mutations per megabase. IHC staining showed an immune-active tumor microenvironment characterized by extensive CD8+ T-cell infiltration. ATM expression was inversely correlated with percentage of tumor-infiltrating CD8+ T cells. Trajectory analysis indicated gradually upregulated exhausted markers and an increased apoptotic trend of CD8+ T cells despite continuous exposure to ICI-based treatment. ICI-based treatment was associated with improved overall response rate (17.6% vs. 0%, P = 0.046) and disease control rate (DCR; 64.7% vs. 12.5%, P = 0.004) compared with tyrosine kinase inhibitor. Among patients with germline mutation, the ORR (16.7% vs. 0%, P = 0.086) and the DCR (66.7% vs. 14.3%, P = 0.011) were higher after ICI-based treatment. CONCLUSIONS: Immune infiltration is frequent in FHRCC. ICI-based treatment is a promising regimen, and treatment response depends on the functional status of tumor-infiltrating lymphocytes. ICI-based treatment cannot reverse the exhaustion of CD8+ T cells in patients with progressive disease, highlighting the need for additional therapeutic strategies.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Fumarate Hydratase/genetics , Immunotherapy , Immunologic Factors , Genomics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Tumor Microenvironment/genetics
5.
Adv Mater ; 34(26): e2201413, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35419852

ABSTRACT

The ability to generate and manipulate photoluminescence (PL) with high spatial resolution has been of primary importance for applications in micro-optoelectronics, while the emerging metal halide perovskites offer novel material platforms where diverse photonic functionalities and fine structuring are constantly explored. Herein, micro-PL patterns consisting of highly luminescent CsPbBr3 nanocrystals (NCs) in nonluminescent perovskite crystals are directly fabricated by focused femtosecond laser irradiation. Further modulation with a moisture field leads to the selective dissolution of the laser-destabilized perovskite structures as revealed by density functional theory simulations, thus allowing for facile control of the reversible PL from the recrystallization of moisture-induced CsPbBr3 NCs. By leveraging the coupled laser writing and moisture modulation, multimodal information encryption is realized by reversible encryption-reading and repeatable erasing-refreshing. This optical storage mechanism is also extended to 3D and 4D by realizing spatially and temporally resolved optical encryption. The coupled multifield modulation on perovskite crystals can enable potential applications in optical storage and encryption, and offer a novel solution for the creation and manipulation of localized PL structures with high temporal and spatial resolutions.

6.
Clin Exp Pharmacol Physiol ; 49(1): 175-187, 2022 01.
Article in English | MEDLINE | ID: mdl-34546569

ABSTRACT

Cervical cancer (CC) is a common gynaecological malignant tumour with a high mortality rate. Circular RNAs (circRNAs) play a critical role in tumour occurrence and development. This study aimed to investigate the function and molecular basis of hsa_circ_0009189 (circSAMD11) in CC development. RNA levels were determined by qRT-PCR, and protein expression was measured by western blot. Cell proliferation, migration, invasion and apoptosis were detected by Cell Counting Kit-8 (CCK-8), colony formation, Transwell and flow cytometry assays. The relationship between miR-503 and circSAMD11/SOX4 was validated via dual-luciferase reporter assay, RIP or RNA pull-down assay. Xenograft assay was conducted to test tumour growth in vivo. CircSAMD11 and SOX4 levels were elevated, while miR-503 level was reduced in CC tissues and cells. Knockdown of circSAMD11 suppressed CC cell proliferation, migration and invasion and accelerated apoptosis. CircSAMD11 was localised in cytoplasm and directly targeted miR-503. Also, circSAMD11 sponged miR-503 to modulate SOX4 expression. Additionally, circSAMD11 regulated CC progression via absorbing miR-503 or modulating SOX4. Besides, depletion of circSAMD11 hindered tumorigenesis in vivo. CircSAMD11 contributed to CC progression by regulating miR-503/SOX4 signalling and activating Wnt/ß-catenin pathway, which provides a promising therapeutic target for cervical cancer.


Subject(s)
Eye Proteins/genetics , MicroRNAs/metabolism , RNA, Circular/metabolism , RNA, Neoplasm/metabolism , SOXC Transcription Factors/metabolism , Uterine Cervical Neoplasms/metabolism , Wnt Signaling Pathway , Animals , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Eye Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation , Uterine Cervical Neoplasms/pathology
7.
J Nanosci Nanotechnol ; 21(5): 3035-3040, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33653477

ABSTRACT

The development of novel sonosensitizers with safety and efficiency is a key problem in anti-tumor sonodynamic therapy. Phycocyanin (PC) has been proved to have the singlet oxygen radicals (ROS) generation ability, and the potential of PC as a novel sonosensitizer has been investigated. To overcome the disadvantages of PC in vivo, such as poor stability and low half-life, PC nanoparticles (PCNP) were prepared by the cross-linking method. According to the results, PCNP has been found with good morphology, good particle size distribution and good stability. Human breast cancer cell line MCF-7 was used to investigate PCNP cell uptake ability. ROS generation and cytotoxicity under ultrasonic irradiation (sonotoxicity) were also studied on this cell. Under the condition of 0.75 w/cm² ultrasound, PCNP has a good ROS productivity and is equivalent to the sonotoxicity of the known sonosensitizer hematoporphyrin monomethyl Ether (HMME). In conclusion, PCNP is expected to be developed as an effective sonosensitizer for the sonodynamic therapy of tumors.


Subject(s)
Nanoparticles , Neoplasms , Ultrasonic Therapy , Cell Line, Tumor , Humans , MCF-7 Cells , Michigan , Phycocyanin
8.
Adv Sci (Weinh) ; 8(2): 2002579, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33511012

ABSTRACT

Morphological control is a fundamental challenge of nanomaterial development. Commonly, hierarchical nanostructures cannot be induced by a single driving force, but obtained through balancing multiple driving forces. Here, a feasible strategy is reported based on the synergistic effect of proton and acid anion, leading to the morphological variation of vanadium oxide from nanowire, bundle, to hierarchical nanoflower (HNF). Protons can only induce the formation of nanowire through reducing the pH value ≤ 2. However, acid anions with strong coordination ability, e.g., phosphate radicals, can also participate in morphological regulation at high concentration. Through coordinating with exposed vanadium ions, the enrichment of phosphate radicals at ledge and kink changes the growth directions, giving rise to the advanced structures of bundle and HNF. The lithium ion batteries using HNF as a cathode achieve a 30% improved initial discharge specific capacity of 436.23 mAh g-1 at a current density of 0.1 A g-1, reaching the theoretical maximum value of vanadium oxide based on insertion/desertion of three lithium ions, in addition to strong cyclic stability at 1 A g-1.

9.
ACS Appl Bio Mater ; 4(9): 7176-7185, 2021 09 20.
Article in English | MEDLINE | ID: mdl-35006949

ABSTRACT

Combined chemotherapy and sonodynamic therapy (chemo-SDT) based on the nanoplatform/nanocarrier is a potential antitumor strategy that has shown higher therapeutic efficacy than any monotherapy. Therefore, a safe and effective multifunctional system with a concise design and simple preparation process is urgently needed. In this work, by using a one-step cross-linking method, a multifunctional nanosystem, which employs phycocyanin nanoparticles (PCNPs) as a nanocarrier to deliver the chemotherapy drug docetaxel (DTX) and a nanosonosensitizer to generate reactive oxygen species (ROS), was prepared and evaluated (PCNP-DTX). Under low-intensity ultrasound irradiation, PCNP-DTX retained the ROS generation ability of phycocyanin and caused the destruction of mitochondrial potential. PCNP was also revealed to be an acidic and ultrasound-sensitive carrier with good biocompatibility. In addition to its cumulation behavior in tumors, PCNP can achieve tumor-targeted delivery and release of DTX. PCNP-DTX has also been proven to have a significant chemo-SDT synergy effect when low-intensity ultrasound was applied, showing enhanced antitumor activity both in vitro and in vivo. This study provides a concise yet promising nanoplatform based on the natural protein phycocyanin for achieving an effective, targeted, and synergetic chemo-SDT for antitumor therapy.


Subject(s)
Nanoparticles , Phycocyanin , Cell Line, Tumor , Docetaxel/therapeutic use , Nanoparticles/therapeutic use , Reactive Oxygen Species/metabolism
10.
Medicine (Baltimore) ; 99(2): e18769, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31914101

ABSTRACT

BACKGROUND: Complicated urinary tract infections (cUTI) are universal reasons for hospitalization, and highly likely to develop into sepsis or septic shock. Carbapenem antibiotics with potentially higher efficacy or with fewer and milder side effects have increased in popularity, but evidence is limited by a scarcity of randomized controlled trials (RCTs) comparing different carbapenem antibiotics for cUTI. Network meta-analysis is a useful tool to compare multiple treatments when there is limited or no direct evidence available. OBJECTIVE: The aim of this study is to compare the efficacy and safety of different carbapenems with alternative antibiotics for the treatment of cUTI. METHODS: Pubmed, Medline, CENTRAL, and Embase were searched in November 2018. Studies of cUTI patients receiving carbapenem were included. We performed network meta-analysis to estimate the risk ratio (RR) and 95% credible interval (CrI) from both direct and indirect evidence; traditional meta-analysis was also performed. Primary outcomes were clinical and microbiological treatment success. RESULTS: A total of 19 studies and 7380 patients were included in the analysis. Doripenem (DOPM) was associated with lower clinical treatment success rates than other carbapenems. Although the efficacy of other carbapenems by RRs with 95% CrIs did not show statistical differences, the cumulative rank probability indicated that meropenem/vaborbactam (MV), ertapenem (ETPM), and biapenem (BAPM) had higher clinical and microbiological treatment success rates; imipenem/cilastatin (IC) and MV showed higher risk of adverse events (AEs). CONCLUSIONS: MV was associated with higher treatment success rates for cUTI, especially for cUTI caused by carbapenem-resistant uropathogens, but also with higher risk of AEs. Our findings suggest MV as a first-choice treatment of carbapenem-resistant cUTI. ETPM, BAPM, and meropenem (MEPM) is another reasonable choice for cUTI empiric therapy.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Carbapenems/therapeutic use , Urinary Tract Infections/drug therapy , Anti-Bacterial Agents/adverse effects , Carbapenems/adverse effects , Humans , Network Meta-Analysis , Urinary Tract Infections/microbiology
11.
Neurochem Int ; 120: 206-212, 2018 11.
Article in English | MEDLINE | ID: mdl-30196147

ABSTRACT

Diabetic cardiac autonomic neuropathy (DCAN) is a common and serious complication of diabetes mellitus (DM), is manifested by nerve fiber injury in the sympathetic and parasympathetic nerve of the autonomic nervous system, and causes hypertension, cardiac arrhythmias, silent myocardial infarction, and sudden death. Our previous study observed that P2X3 receptor in superior cervical ganglia in rat was associated with sympathetic neuropathy caused by myocardial ischemia. However, whether the P2X3 receptor is involved in the diabetic cardiac autonomic neuropathy and the underlying mechanisms remain unclear. The aim of this research was explored the effect of P2X3 short hairpin RNA (shRNA) on information transmission of sympathetic nerve induced by DCAN. Sprague-Dawley (SD) male rats were randomly divided into four groups: Control, DM, DM treated with P2X3 shRNA and DM treated with scramble shRNA. Blood pressure, heart rate and heart rate variability were measured in each group. The expression of P2X3 in stellate ganglion (SG) was detected by immunohistochemistry, western blotting and QPCR. Results showed that P2X3 shRNA alleviated blood pressure and heart rate, improved heart rate variability, decreased the up-regulated expression levels of P2X3, interleukin-1beta and tumor necrosis factor alpha in stellate ganglion (SG) of diabetic rats. P2X3 shRNA also reduced the incremental concentration of serum epinephrine and the phosphorylation level of extracellular regulated protein kinases1/2 in diabetic rats. These results indicated that P2X3 shRNA could decrease sympathetic activity via inhibiting P2X3 receptor in the SG to alleviate DCAN.


Subject(s)
Diabetic Neuropathies/genetics , Gene Knockdown Techniques , Receptors, Purinergic P2X3/genetics , Stellate Ganglion/metabolism , Animals , Blood Pressure/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/metabolism , Gene Knockdown Techniques/methods , Interleukin-1beta/metabolism , Male , Myocardial Ischemia/metabolism , RNA, Small Interfering/genetics , Rats, Sprague-Dawley , Receptors, Purinergic P2X3/metabolism , Superior Cervical Ganglion/metabolism , Sympathetic Nervous System/metabolism
12.
Sci Rep ; 7: 43186, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28266570

ABSTRACT

Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH-) content. Enhanced 2.7 µm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 µm (0.85 × 10-20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

13.
Sci Rep ; 6: 37141, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27845417

ABSTRACT

Rare earth doped mid-infrared (MIR) fluorescent sources have been widely investigated due to their various potential applications in the fields of communication, chemical detecting, medical surgery and so forth. However, with emission wavelength extended to MIR, multiphonon relaxation process that strongly quenched the MIR emission is one of the greatest challenges for such practical applications. In our design, we have described a controllable gas-aided annealing strategy to modulate the phase, crystal size, morphology and fluorescent performance of a material simultaneously. Uniform and monodispersed Er3+-doped La2O2S and La2O2SO4 nanocrystals with a similar lattice structure, crystallinity, diameter and morphology have been introduced to investigate the impact of multiphonon relaxation on luminescence performance. Detailed spectroscopic evolutions in the region of MIR, near-infrared (NIR), visible upconversion (UC) and their corresponding decay times provide insight investigation into the fluorescent mechanism caused by multiphonon relaxation. A possible energy transfer model has also been established. Our results present direct observation and mechanistic investigation of fluorescent evolution in multiphonon relaxation process, which is conductive to design MIR fluorescent materials in the future. To the best of our knowledge, it is the first investigation on MIR fluorescent performance of La2O2S nanocrystals, which may find various applications in many photoelectronic fields.

14.
Sci Rep ; 6: 35348, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27748411

ABSTRACT

Monodisperse lanthanide oxyfluorides LnOF (Ln = Gd, Y) with mid-infrared emissions were controllably synthesized via a mild co-precipitation route and a subsequent heat-treatment. The detailed composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that monodisperse GdOF:Er3+ were nano-riced shape with length about 350 nm and width about 120 nm, while the quasi-spherical YOF:Er3+ were uniform nanocrystals with an average size around 100 nm. The influence of calcination temperature on the size and phase transition of LnOF nanocrystals was also investigated. The photoluminescence (PL) spectra indicated that the 2.7 µm emission of Er3+ had achieved in both GdOF and YOF nanocrystals, which were calcined at different temperatures. In addition, the decay time of both 4I13/2 and 4I13/2 energy levels corresponding to Er3+ in YOF nanocrystals were also studied in detail. The results suggested that both rice-shaped GdOF nanocrystals and YOF nanocrystals could provide suitable candidate materials for nanocrystals-glass composites, which could be a step forward to the realization of mid-infrared laser materials.

15.
Sci Rep ; 6: 29871, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27453150

ABSTRACT

The morphology of hexagonal phase NaYF4:Er(3+) nanorods synthesized by hydrothermal method changed greatly after a continuing calcination, along with a phase transformation to cubic phase. Photoluminescence (PL) spectra indicated that mid-infrared (MIR) emission was obtained in both hexagonal and cubic phase NaYF4:Er(3+) nanocrystals for the first time. And the MIR emission of NaYF4:Er(3+) nanocrystals enhanced remarkably at higher calcination temperature. To prevent uncontrollable morphology from phase transformation, the cubic phase NaYF4:Er(3+) nanospheres with an average size of ~100 nm were prepared via a co-precipitation method directly. In contrast, the results showed better morphology and size of cubic phase NaYF4:Er(3+) nanocrystals have realized when calcined at different temperatures. And PL spectra demonstrated a more intense MIR emission in the cubic phase NaYF4:Er(3+) nanocrystals with an increasing temperature. Besides, the MIR emission peak of Er(3+) ions had an obvious splitting in cubic phase NaYF4. Therefore, cubic phase NaYF4:Er(3+) nanospheres with more excellent MIR luminescent properties seems to provide a new material for nanocrystal-glass composites, which is expected to open a broad new field for the realization of MIR lasers gain medium.

16.
Chempluschem ; 79(4): 601-609, 2014 Apr.
Article in English | MEDLINE | ID: mdl-31986704

ABSTRACT

Yb3+ /Tm3+ -codoped NaYF4 nanocrystals with different phases (cubic α and hexagonal ß) and morphologies (nanoparticles, nanorods, nanoplates) have been controllably fabricated by a convenient hydrothermal synthesis technique. Up-conversion emission peaks were observed at λ=450, 475, 645, and 700 nm, which were assigned to the 1 D2 -3 F4 , 1 G4 -3 H6 , 1 G4 -3 F4 , and 3 F2 -3 H6 transitions of Tm3+ ions, respectively. By using a homemade detection system, the anisotropic polarized emission properties of individual NaYF4 :Yb, Tm nanorods and nanoplates were investigated. The results indicated that the polarization emission ratio, ρ, of the 1 G4 -3 F4 emission of individual NaYF4 :Yb,Tm nanorods was 0.18, whereas the anisotropic polarization emission of individual NaYF4 :Yb,Tm nanoplates could be neglected; this indicated that the size and morphology of the nanocrystal played an important role in the polarized emission properties. Investigation into the mechanism indicated that the dielectric mismatch was not the predominant mechanism for the polarized emission of individual NaYF4 :Yb,Tm nanorods. The as-prepared NaYF4 :Yb,Tm nanocrystals, with controllable morphology and anisotropic polarized emission properties, are expected to be widely applied as polarized light resources, bio-labels, photodetectors, and so forth.

17.
Sci Rep ; 3: 1943, 2013.
Article in English | MEDLINE | ID: mdl-23735995

ABSTRACT

Graphite like C3N4 (g-C3N4) was synthesized facilely via the low temperature thermal condensation of melamine between 300-650°C. The results showed that the products maintained as melamine when the temperature is below 300°C. With the increase of temperature, the products were transformed into carbon nitride and amorphous g-C3N4 successively. The morphology of products was changed from spherical nanoparticles of melamine into layer carbon nitride and g-C3N4 with the increase of temperature. The photoluminescence spectra showed that the carbon nitride products have continuous tunable photoluminescence properties in the visible region with increasing temperature. With the help of steady state, transient state time-resolved photoluminescence spectra and Raman microstructural characterization, a novel tunable photoluminescence mechanism was founded systematically, which is mainly related to the two dimensional π-conjugated polymeric network and the lone pair of the carbon nitride.


Subject(s)
Graphite/chemical synthesis , Luminescence , Nanostructures/chemistry , Nanotechnology , Nitriles/chemistry , Triazines/chemistry , Molecular Structure , Photochemical Processes , Powders , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...