Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; : 174567, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981542

ABSTRACT

Coal spontaneous combustion (CSC) is disturbed by complex downhole conditions. However, current research by scholars mainly focuses on the impact of single conditional disturbances on CSC, which is difficult to comprehensively characterize the oxidation and spontaneous combustion characteristics of granular coal in a complex environment. For this reason, a temperature-programmed gas chromatographer (TP-GC) hyphenated instrument and a C600 high-precision microcalorimeter was used for analysis. The variation rules of derived gas and oxidizing thermodynamic parameters in the coal oxidizing and heating process under stress-heat-gas interaction were obtained. The intrinsic action mechanism of stress-heat-gas interaction to increase the risk of spontaneous combustion of granular coal is described. The results showed that as the level of air leakage (AL) rate increased, the concentration of derived gases in the coal sample showed a "˄"-shaped trend, and the heat release intensity and heat release varied in stages, both reaching their peak at a leakage rate of 150 mL/min. Under different stress conditions, the heat release intensity and heat release of coal also reach their maximum at 150 mL/min, indicating a higher risk of spontaneous combustion of coal at 150 mL/min. As the stress increases, the coal­oxygen reaction is inhibited, leading to a decrease in the concentration of derived gases and a reduction in the average heat release of the coal sample. This indicates that particulate coal is prone to spontaneous combustion when subjected to high air leakage rate and low stress conditions. The experimental results provide a theoretical basis for the prevention of CSC under complex conditions.

2.
Sci Total Environ ; 924: 171574, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38462001

ABSTRACT

Besides be affected by coal confining pressure, coal seams are also be affected by the surrounding pressure during mining. To understand the heat release characteristics and microstructural evolution of oxidization within coal under different gas pressures is of great significance. For this reason, a combination of theoretical research and test analysis was adopted, which includes differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and mercury intrusion method (MIP). The influences of gas phase transformation and migration on the oxidation and spontaneous combustion processes of gas-containing coal under different gas pressures were explored. The distributions and variations in heat release, gas derivation, pore structure and functional group characteristics during the oxidation of gas-containing coal were analysed. We clarified the cross-coupling attributes of heat, seepage and chemical properties in the oxidation of gas-containing coal. The experimental results show that the methane within coal migrates outward in pores with the increase of temperature, which inhibits the penetration and adsorption of oxygen, thereby inhibiting the coal­oxygen composite reaction and delaying the heat accumulation within coal. There is a positive correlation between loose and porous characteristics of coal and gas pressure. With the continuous increase of coal temperature, the pore connectivity of high-pressure gas-containing coal is enhanced, which increases the risk of coal spontaneous combustion. The research results are of great significance to the theoretical research on the prevention and prediction of spontaneous combustion of gas-containing coal.

3.
Sci Total Environ ; 915: 169843, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38185151

ABSTRACT

The utilization of coal resources has been improved by using the method of narrow coal pillar mining, but this leads to a stress concentration in the coal pillars, which causes differences in the oxidation of coal pillars. To study the effect of stress on the oxidation and spontaneous combustion of coal samples, programmed heating-gas chromatography coupling experiments were carried out on coal samples under different stresses, analyzing the effect rule of stress on the gas derivatives of coal samples in the process of heating and oxidation. Furthermore, the mechanism of stress influence on thermal effect parameters is explored on the basis of that analysis. The results show that the rate of oxygen consumption, CO, CO2 concentration and heat release intensity of coal samples show a changing trend, initially increasing and then decreasing with increasing stress, and these values within coal are at the maximum when the stress is 9 MPa; and with increasing stress, the activation energy shows a "V" type change and reaches the minimum of 26.89 kJ/mol at 6 MPa, which indicates that low stress promotes coal spontaneous combustion (CSC), while high stress inhibits CSC. The thermal conduction coefficient of coal samples shows a negative correlation with temperature at the low-temperature stage, while the thermal conductivity of coal samples shows a positive correlation with temperature at the high-temperature stage, and the thermal conduction coefficient of coal samples reaches a minimum at temperatures of 70 °C and 0 MPa of stress. The porosity within coal decreases, and the thermal conductivity coefficient within coal increases with increasing stress because the increase in stress makes the macromolecules within coal disassemble into small molecules, the structure becomes more compact, and the thermal conductivity increases. The study provides an important theoretical basis for better understanding the effect mechanism of stress on CSC.

4.
Sci Total Environ ; 895: 165206, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37391137

ABSTRACT

Coal spontaneous combustion (CSC) wastes valuable resources and does great damage to the environment. To study the oxidation and exothermic properties of CSC under solid-liquid-gas coexistence conditions, a C600 microcalorimeter was used to analyze the heat released by the oxidation of raw coal (RC) and water immersion coal (WIC) under different air leakage (AL) conditions. The experimental results showed that the AL was negatively correlated with the heat release intensity (HRI) in the initial stages of coal oxidation, but as the oxidation proceeded, the AL and the HRI gradually showed positive correlations. The HRI of the WIC was lower than that of the RC under the same AL conditions. However, since water participated in the generation and transfer of free radicals in the coal oxidation reaction and promoted the development of coal pores, the HRI growth rate of the WIC was higher than that of the RC during the rapid oxidation period, and the self-heating risk was higher. The heat flow curves for the RC and WIC in the rapid oxidation exothermic stage could be fitted with quadratic functions. The experimental results provide an important theoretical basis for the prevention of CSC.

5.
ACS Omega ; 8(1): 1375-1388, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643466

ABSTRACT

To investigate the effect of concentration of N2 and CO2 (0, 10, 20, 30, 40, and 50%) on the flame propagation characteristics of CH4/air premixed gases with stoichiometric ratios in variable cross-section ducts, experiments were conducted in four combinations of ducts at initial conditions of 298 K and 1 atm. The results show that the flame propagation velocity, propagation time, and overpressure are greater in the suddenly contracted duct than in the suddenly expanded duct if the dimensions of the ducts are kept constant. However, an increase in inert gas concentration leads to a decrease in flame propagation speed, an increase in flame propagation time, and changes in flame structure and pressure. "Tulip" flames appeared when a duct with a cross section of 100 mm × 100 mm was combined with a duct with a cross section of 70 mm × 70 mm, whether N2 or CO2 was added or what its concentration was. However, when a duct with a cross section of 140 mm × 140 mm was combined with a 70 mm × 70 mm duct, a "tulip" flame is formed only at a CO2 concentration of 50%. As the concentration of inert gas increases, the explosion pressure first decreases and then stabilizes, while the rate of pressure increase showed a monotonically decreasing trend. The explosion pressure is minimized when the concentration of CO2 and N2 is 30 and 40%, respectively.

6.
ACS Omega ; 6(23): 15126-15135, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34151092

ABSTRACT

To study the flame propagation characteristics of methane/air premixed gas in the pipeline with a sudden change of the pipe cross-sectional area, six kinds of customized pipes are used to study the methane/air premixed gas with a concentration of 9.5%. The results show that when the initial smooth flame front encounters an abrupt change in the cross-sectional area, the flame front becomes disordered and a turbulent flame is formed. A greater change in the cross-sectional area results in more severe flame turbulence. Compared with larger cross-section pipes set at the ignition end and downstream end, when the large cross-sectional area pipe is set in the middle of the pipe, the flame propagation process receives the secondary mutation induction effect of the abrupt cross section and the turbulence effect is stronger. The maximum propagation velocity and pressure are observed in configuration with the larger pipe in the middle of the pipe network. Moreover, when the cross-sectional area of this larger pipe increases, the flame is more substantially influenced by longitudinal expansion, the maximum propagation velocity and maximum overpressure increase accordingly, and the pressure oscillations are more obvious.

7.
ACS Omega ; 5(32): 20643-20652, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32832818

ABSTRACT

The effect of metal foam mesh on flame propagation of biomass-derived gas in a half-open duct was studied. The explanations are based essentially on the experimental investigations of premixed biomass-derived gas explosions carried out in a rectangular half-open combustion chamber. The initial temperature T 0 and pressure P 0 were 300 K and 1.0 atm, respectively. The key parameters of explosive characteristics, such as flame propagation images and explosive overpressure, were analyzed by changing the porosity, the pore density of porous metal foams, and the gas components. The results show that the use of porous metal foam has a significant inhibitory effect on the gas explosion. Although the combustion structure of the flames is similar, the action of the porous metal foam during the experiment also shows the characteristics consistent with the obstacles. When the porosity of the porous foam is 97%, the flame can be stimulated to produce turbulence, and then the shock-flame interaction generated by the reflection of the lead shock wave can enhance the explosion propagation and promote the explosion escalation. However, with the increase of hole density, the existence of the porous metal foam by momentum loss and heat loss to curb the spread of the explosion not only hindered the flow of not flammable but also extracted energy from the expansion of the combustion products at the same time. This study also confirms that the biological hydrogen and methane component has a vital role in the flame, and a reasonable hydrogen and methane ratio can improve the flame burning to get more economic value.

8.
Environ Sci Pollut Res Int ; 27(5): 5606-5619, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31858413

ABSTRACT

In order to study the effects of chemical composite additive (CCA) on the microscopic characteristics of spontaneous combustion coal, atomic force microscope and Fourier transform infrared spectroscopy technology were used to study the microstructure and active groups of spontaneous combustion coal. The roughness, three-dimensional surface morphology, microscopic pore structure, infrared spectrum, and active group content of raw coal samples and coal samples treated with water or different concentrations of CCA were analyzed. The experimental results showed that compared with the raw coal, the roughness Rq and Ra of the CCA-treated coal samples decreased with increasing CCA concentration, and the surface topography of the microscopic structure tended to be flat and smooth, and the size becomes smaller and the depth becomes shallow of pore. In the raw coal samples and coal samples treated with water and CCA, the main types of active groups remained constant. However, the contents of these groups changed, and the order of the contents of main types of active groups is water-treated > raw coal (untreated) > CCA-1% treated > CCA-5% treated > CCA-10% treated > CCA-20% treated. In addition, the mechanism of the CCA inhibition of coal spontaneous combustion was discussed and analyzed.


Subject(s)
Coal , Spontaneous Combustion , Spectroscopy, Fourier Transform Infrared , Water
9.
RSC Adv ; 9(24): 13940-13948, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-35519601

ABSTRACT

Cellular instability is responsible for the self-acceleration of a flame, and such acceleration might cause considerable damage. This paper presents an experimental study on the inhibition effect of CO2 and an ultrafine water mist on the self-acceleration characteristics of a spherical flame in the initial stage of a 9.5% methane/air explosion in a constant volume combustion bomb. Results showed that insufficient water mist enhanced the self-acceleration of the spherical flame and the intensity of the explosion; nevertheless, the synergistic inhibition effect of CO2 and ultrafine water mist prevented enhancement of the explosion and significantly mitigated the self-acceleration of spherical flames, which observably delayed the appearance time of a cellular flame, and reduced the flame propagation speed, overpressure and the mean rate of pressure rise, indicating that suppression of flame self-acceleration could effectively mitigate the damage from a methane/air explosion. The reason for the synergistic effect was a result of a combination of physical suppression and chemical suppression: due to the preferential diffusion dilution effect of CO2, the initial flame speed was reduced, and the flame became thicker, which increased the evaporation time and quantity of droplets around the flame front, accordingly enhancing the cooling effect on the flame front. The increased flame thickness could withstand greater disturbance and inhibit the formation and development of a cellular flame. Meanwhile, CO2 and H2O can also reduce the concentration of active radicals (O, H and OH) and reduce the reaction rate and combustion rate of a methane/air explosion.

10.
J Hazard Mater ; 355: 25-33, 2018 08 05.
Article in English | MEDLINE | ID: mdl-29763798

ABSTRACT

To investigate the effect of blockage ratios on the explosion suppression by powder suppressant, an experimental study was performed to suppress the methane-air explosion in a 5L duct with different blockage ratios and various concentrations of BC dry powder. The results indicate that flames experienced both the spherical and finger-shaped stages. Furthermore, the smoothness of flame front initially decreased and then increased. Flame propagation velocities were higher with larger blockage ratios except for φ = 1. The maximum peak overpressure (MPP) with the blockage ratio was slightly increased till φ reached 0.7 then surged sharply. The MPP decreased as the powder concentration increased. The maximum drop rate in the MPP being 34.8%-59.9%, depending on powder concentrations, occurred at the blockage ratio between 0.4 and 0.6. The result is ascribed to the competition between the suppression augmentation by the higher venting-generated turbulence and the suppression attenuation by the shorter residence time of the particle. However, the drop rate was relatively less promoted by increasing the concentration from 80 g/m3 to 240 g/m3. The inhibitor at higher concentration was less effective. An inhibition mechanism is explained by analogy to droplet group combustion, in which the decomposition regime of NaHCO3 differs at different concentrations.

11.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 8): m1160-1, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-22090916

ABSTRACT

The reaction of praseodymium nitrate and 4-tert-butyl-benzoic acid (tBBAH) in aqueous solution yielded the dinuclear title complex, [Pr(2)(C(11)H(13)O(2))(6)(C(11)H(14)O(2))(2)(H(2)O)(2)], which has non-crystallographic C(i) symmetry. The two Pr(III) ions are linked by two bridging and two bridging-chelating tBBA ligands, with a Pr⋯Pr separation of 4.0817 (9) Å. Each Pr(III) ion is nine-coordinated by one chelating tBBA ion, one monodentate tBBAH ligand and one water mol-ecule in a distorted tricapped trigonal-prismatic environment. The complex mol-ecules are linked into infinite chains along the c axis by inter-molecular O-H⋯O hydrogen bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...