Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
N Engl J Med ; 386(21): 1998-2010, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35613022

ABSTRACT

BACKGROUND: Although hypomethylating agents are currently used to treat patients with cancer, whether they can also reactivate and up-regulate oncogenes is not well elucidated. METHODS: We examined the effect of hypomethylating agents on SALL4, a known oncogene that plays an important role in myelodysplastic syndrome and other cancers. Paired bone marrow samples that were obtained from two cohorts of patients with myelodysplastic syndrome before and after treatment with a hypomethylating agent were used to explore the relationships among changes in SALL4 expression, treatment response, and clinical outcome. Leukemic cell lines with low or undetectable SALL4 expression were used to study the relationship between SALL4 methylation and expression. A locus-specific demethylation technology, CRISPR-DNMT1-interacting RNA (CRISPR-DiR), was used to identify the CpG island that is critical for SALL4 expression. RESULTS: SALL4 up-regulation after treatment with hypomethylating agents was observed in 10 of 25 patients (40%) in cohort 1 and in 13 of 43 patients (30%) in cohort 2 and was associated with a worse outcome. Using CRISPR-DiR, we discovered that demethylation of a CpG island within the 5' untranslated region was critical for SALL4 expression. In cell lines and patients, we confirmed that treatment with a hypomethylating agent led to demethylation of the same CpG region and up-regulation of SALL4 expression. CONCLUSIONS: By combining analysis of patient samples with CRISPR-DiR technology, we found that demethylation and up-regulation of an oncogene after treatment with a hypomethylating agent can indeed occur and should be further studied. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).


Subject(s)
Antineoplastic Agents , Demethylation , Myelodysplastic Syndromes , Oncogenes , Up-Regulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Clustered Regularly Interspaced Short Palindromic Repeats , Demethylation/drug effects , Humans , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Oncogenes/drug effects , Oncogenes/physiology , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation/drug effects
3.
Cell ; 185(9): 1521-1538.e18, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35447071

ABSTRACT

Interest in harnessing natural killer (NK) cells for cancer immunotherapy is rapidly growing. However, efficacy of NK cell-based immunotherapy remains limited in most trials. Strategies to augment the killing efficacy of NK cells are thus much needed. In the current study, we found that mitochondrial apoptosis (mtApoptosis) pathway is essential for efficient NK killing, especially at physiologically relevant effector-to-target ratios. Furthermore, NK cells can prime cancer cells for mtApoptosis and mitochondrial priming status affects cancer-cell susceptibility to NK-mediated killing. Interestingly, pre-activating NK cells confers on them resistance to BH3 mimetics. Combining BH3 mimetics with NK cells synergistically kills cancer cells in vitro and suppresses tumor growth in vivo. The ideal BH3 mimetic to use in such an approach can be predicted by BH3 profiling. We herein report a rational and precision strategy to augment NK-based immunotherapy, which may be adaptable to T cell-based immunotherapies as well.


Subject(s)
Immunotherapy , Killer Cells, Natural , Neoplasms/therapy , Apoptosis , Neoplasms/pathology
5.
Signal Transduct Target Ther ; 7(1): 51, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35185150

ABSTRACT

Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2-selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , MAP Kinase Signaling System , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , ras Proteins , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , MAP Kinase Signaling System/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology
6.
Clin Cancer Res ; 24(10): 2417-2429, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29463558

ABSTRACT

Purpose: Wnt/ß-catenin signaling is required for leukemic stem cell function. FLT3 mutations are frequently observed in acute myeloid leukemia (AML). Anomalous FLT3 signaling increases ß-catenin nuclear localization and transcriptional activity. FLT3 tyrosine kinase inhibitors (TKI) are used clinically to treat FLT3-mutated AML patients, but with limited efficacy. We investigated the antileukemia activity of combined Wnt/ß-catenin and FLT3 inhibition in FLT3-mutant AML.Experimental Design: Wnt/ß-catenin signaling was inhibited by the ß-catenin/CBP antagonist C-82/PRI-724 or siRNAs, and FLT3 signaling by sorafenib or quizartinib. Treatments on apoptosis, cell growth, and cell signaling were assessed in cell lines, patient samples, and in vivo in immunodeficient mice by flow cytometry, Western blot, RT-PCR, and CyTOF.Results: We found significantly higher ß-catenin expression in cytogenetically unfavorable and relapsed AML patient samples and in the bone marrow-resident leukemic cells compared with circulating blasts. Disrupting Wnt/ß-catenin signaling suppressed AML cell growth, induced apoptosis, abrogated stromal protection, and synergized with TKIs in FLT3-mutated AML cells and stem/progenitor cells in vitro The aforementioned combinatorial treatment improved survival of AML-xenografted mice in two in vivo models and impaired leukemia cell engraftment. Mechanistically, the combined inhibition of Wnt/ß-catenin and FLT3 cooperatively decreased nuclear ß-catenin and the levels of c-Myc and other Wnt/ß-catenin and FLT3 signaling proteins. Importantly, ß-catenin inhibition abrogated the microenvironmental protection afforded the leukemic stem/progenitor cells.Conclusions: Disrupting Wnt/ß-catenin signaling exerts potent activities against AML stem/progenitor cells and synergizes with FLT3 inhibition in FLT3-mutant AML. These findings provide a rationale for clinical development of this strategy for treating FLT3-mutated AML patients. Clin Cancer Res; 24(10); 2417-29. ©2018 AACR.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Wnt Signaling Pathway/drug effects , fms-Like Tyrosine Kinase 3/genetics , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Drug Synergism , Female , Gene Silencing , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Mice , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Transport/drug effects , Tumor Microenvironment/genetics , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
7.
Cancer Cell ; 32(6): 748-760.e6, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29232553

ABSTRACT

Evasion of apoptosis is a hallmark of cancer. Bcl-2 and p53 represent two important nodes in apoptosis signaling pathways. We find that concomitant p53 activation and Bcl-2 inhibition overcome apoptosis resistance and markedly prolong survival in three mouse models of resistant acute myeloid leukemia (AML). Mechanistically, p53 activation negatively regulates the Ras/Raf/MEK/ERK pathway and activates GSK3 to modulate Mcl-1 phosphorylation and promote its degradation, thus overcoming AML resistance to Bcl-2 inhibition. Moreover, Bcl-2 inhibition reciprocally overcomes apoptosis resistance to p53 activation by switching cellular response from G1 arrest to apoptosis. The efficacy, together with the mechanistic findings, reveals the potential of simultaneously targeting these two apoptosis regulators and provides a rational basis for clinical testing of this therapeutic approach.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Synthetic Lethal Mutations/drug effects , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Pyrrolidines/pharmacology , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays , para-Aminobenzoates/pharmacology
8.
Clin Cancer Res ; 23(13): 3385-3395, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28096272

ABSTRACT

Purpose: The persistence of leukemia stem cells (LSC)-containing cells after induction therapy may contribute to minimal residual disease (MRD) and relapse in acute myeloid leukemia (AML). We investigated the clinical relevance of CD34+CD123+ LSC-containing cells and antileukemia potency of a novel antibody conjugate SL-101 in targeting CD123+ LSCs.Experimental Methods and Results: In a retrospective study on 86 newly diagnosed AML patients, we demonstrated that a higher proportion of CD34+CD123+ LSC-containing cells in remission was associated with persistent MRD and predicted shorter relapse-free survival in patients with poor-risk cytogenetics. Using flow cytometry, we explored the potential benefit of therapeutic targeting of CD34+CD38-CD123+ cells by SL-101, a novel antibody conjugate comprising an anti-CD123 single-chain Fv fused to Pseudomonas exotoxin A The antileukemia potency of SL-101 was determined by the expression levels of CD123 antigen in a panel of AML cell lines. Colony-forming assay established that SL-101 strongly and selectively suppressed the function of leukemic progenitors while sparing normal counterparts. The internalization, protein synthesis inhibition, and flow cytometry assays revealed the mechanisms underlying the cytotoxic activities of SL-101 involved rapid and efficient internalization of antibody, sustained inhibition of protein synthesis, induction of apoptosis, and blockade of IL3-induced p-STAT5 and p-AKT signaling pathways. In a patient-derived xenograft model using NSG mice, the repopulating capacity of LSCs pretreated with SL-101 in vitro was significantly impaired.Conclusions: Our data define the mechanisms by which SL-101 targets AML and warrant further investigation of the clinical application of SL-101 and other CD123-targeting strategies in AML. Clin Cancer Res; 23(13); 3385-95. ©2017 AACR.


Subject(s)
Immunoconjugates/administration & dosage , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/therapy , Single-Chain Antibodies/administration & dosage , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Flow Cytometry , Humans , Immunoconjugates/immunology , Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Mice , Neoplastic Stem Cells , Signal Transduction/immunology , Single-Chain Antibodies/immunology , Xenograft Model Antitumor Assays
9.
J Diabetes Complications ; 30(8): 1609-1613, 2016.
Article in English | MEDLINE | ID: mdl-27496253

ABSTRACT

AIMS: This study was to determine whether serum glycated albumin (GA) was a better indicator of glycemic control than hemoglobin A1c (HbA1c) when starting a new treatment regimen for type 2 diabetes. METHODS: Newly diagnosed type 2 diabetes patients, or patients who had poor glycemic control with oral hypoglycemic agents, were enrolled at 10 hospitals in Beijing. Serum GA, HbA1c, fasting blood glucose (FBG), and C-peptide were assayed on Days 0, 14, 28, and 91 after treatment. RESULTS: Four hundred ninety-nine patients were enrolled. Mean FBG, GA and HbA1c decreased significantly in patients at Days 14, 28, and 91. In patients with improved glycemic control, the reduction of GA and HbA1c levels was 10.5±13.3% vs. 5.1±5.4% on Day 14, 16.0±13.4% vs. 9.0±7.0% on Day 28, and 18.0±16.7% vs. 18.3±9.4% on Day 91, respectively, compared with baseline values. Changes in GA on Day 14, 28 and 91 were all closely correlated with changes in HbA1c on Day 91. Change in GA on Day 14 was correlated with treatment effectiveness evaluated by HbA1c on Day 91. CONCLUSIONS: GA may be a useful marker for assessing glycemic control at an early stage of new diabetes treatment and assist in guiding adjustments to treatment and therapy.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin/analysis , Serum Albumin/analysis , Blood Glucose/analysis , Diabetes Mellitus, Type 2/diagnosis , Female , Glycation End Products, Advanced , Humans , Male , Middle Aged , Prospective Studies , Glycated Serum Albumin
10.
Oncotarget ; 7(32): 51435-51449, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27283492

ABSTRACT

Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax.


Subject(s)
Apoptosis/drug effects , Biguanides/pharmacology , Biphenyl Compounds/pharmacology , Drug Resistance, Neoplasm/drug effects , Electron Transport/drug effects , Mitochondria/drug effects , Nitrophenols/pharmacology , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Drug Synergism , Humans , Metformin/pharmacology , Mitochondria/metabolism , Phenformin/pharmacology , Piperazines/pharmacology , Rotenone/pharmacology , U937 Cells
11.
Blood ; 126(3): 363-72, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26045609

ABSTRACT

Overexpression of antiapoptotic Bcl-2 proteins such as Bcl-2, Bcl-xL, and Mcl-1 is widely associated with tumor initiation, progression, and chemoresistance. Furthermore, it has been demonstrated that Mcl-1 upregulation renders several types of cancers resistant to the Bcl-2/Bcl-xL inhibitors ABT-737 and ABT-263. The emerging importance of Mcl-1 in pathogenesis and drug resistance makes it a high-priority therapeutic target. In this study, we showed that inhibition of Mcl-1 with a novel pan-Bcl-2 inhibitor (-)BI97D6 potently induced apoptosis in acute myeloid leukemia (AML) cells. (-)BI97D6 induced hallmarks of mitochondrial apoptosis, disrupted Mcl-1/Bim and Bcl-2/Bax interactions, and stimulated cell death via the Bak/Bax-dependent mitochondrial apoptosis pathway, suggesting on-target mechanisms. As a single agent, this pan-Bcl-2 inhibitor effectively overcame AML cell apoptosis resistance mediated by Mcl-1 or by interactions with bone marrow mesenchymal stromal cells. (-)BI97D6 was also potent in killing refractory primary AML cells. Importantly, (-)BI97D6 killed AML leukemia stem/progenitor cells while largely sparing normal hematopoietic stem/progenitor cells. These findings demonstrate that pan-Bcl-2 inhibition by an Mcl-1-targeting inhibitor not only overcomes intrinsic drug resistance ensuing from functional redundancy of Bcl-2 proteins, but also abrogates extrinsic resistance caused by the protective tumor microenvironment.


Subject(s)
Apoptosis/drug effects , Biphenyl Compounds/pharmacology , Drug Resistance, Neoplasm/drug effects , Gossypol/analogs & derivatives , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Naphthoquinones/pharmacology , Nitrophenols/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Blotting, Western , Cell Proliferation/drug effects , Female , Flow Cytometry , Gossypol/pharmacology , Humans , Immunoenzyme Techniques , Immunoprecipitation , Leukemia, Myeloid, Acute/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Biochim Biophys Acta ; 1843(9): 1969-77, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24858343

ABSTRACT

We recently discovered that the protein phosphatase 2A (PP2A) B55α subunit (PPP2R2A) is under-expressed in primary blast cells and is unfavorable for remission duration in AML patients. In this study, reverse phase protein analysis (RPPA) of 230 proteins in 511 AML patient samples revealed a strong correlation of B55α with a number of proteins including MYC, PKC α, and SRC. B55α suppression in OCI-AML3 cells by shRNA demonstrated that the B subunit is a PKCα phosphatase. B55α does not target SRC, but rather the kinase suppresses protein expression of the B subunit. Finally, the correlation between B55α and MYC levels reflected a complex stoichiometric competition between B subunits. Loss of B55α in OCI-AML3 cells did not change global PP2A activity and the only isoform that is induced is the one containing B56α. In cells containing B55α shRNA, MYC was suppressed with concomitant induction of the competing B subunit B56α (PPP2R5A). A recent study determined that FTY-720, a drug whose action involves the activation of PP2A, resulted in the induction of B55α In AML cells, and a reduction of the B subunit rendered these cells resistant to FTY-720. Finally, reduction of the B subunit resulted in an increase in the expression of miR-191-5p and a suppression of miR-142-3p. B55α regulation of these miRs was intriguing as high levels of miR-191 portend poor survival in AML, and miR-142-3p is mutated in 2% of AML patient samples. In summary, the suppression of B55α activates signaling pathways that could support leukemia cell survival.


Subject(s)
Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Protein Phosphatase 2/metabolism , Signal Transduction/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Fingolimod Hydrochloride , Gene Expression Regulation, Leukemic/drug effects , Humans , MicroRNAs/metabolism , Models, Biological , Phosphorylation/drug effects , Propylene Glycols/pharmacology , Protein Kinase C-alpha/metabolism , Proto-Oncogene Proteins c-myc/metabolism , RNA, Small Interfering/metabolism , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , src-Family Kinases/metabolism
13.
Cancer Discov ; 4(3): 362-75, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24346116

ABSTRACT

B-cell leukemia/lymphoma 2 (BCL-2) prevents commitment to programmed cell death at the mitochondrion. It remains a challenge to identify those tumors that are best treated by inhibition of BCL-2. Here, we demonstrate that acute myeloid leukemia (AML) cell lines, primary patient samples, and murine primary xenografts are very sensitive to treatment with the selective BCL-2 antagonist ABT-199. In primary patient cells, the median IC50 was approximately 10 nmol/L, and cell death occurred within 2 hours. Our ex vivo sensitivity results compare favorably with those observed for chronic lymphocytic leukemia, a disease for which ABT-199 has demonstrated consistent activity in clinical trials. Moreover, mitochondrial studies using BH3 profiling demonstrate activity at the mitochondrion that correlates well with cytotoxicity, supporting an on-target mitochondrial mechanism of action. Our protein and BH3 profiling studies provide promising tools that can be tested as predictive biomarkers in any clinical trial of ABT-199 in AML.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Peptide Fragments/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Sulfonamides/pharmacology , Aniline Compounds/pharmacology , Animals , Biomarkers, Tumor , Biphenyl Compounds/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mitochondria/metabolism , Neoplasms, Experimental , Nitrophenols/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Xenograft Model Antitumor Assays
14.
FEMS Yeast Res ; 11(3): 292-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21208374

ABSTRACT

A rapid and convenient method is presented for unmarked gene deletions in Pichia pastoris. Cre/mutated lox system, Zeocin(®) (Invitrogen) resistance marker and homologous arms were spliced together by fusion PCR to generate the gene disruption cassettes (homologous region-lox71-Cre-ZeoR-lox66-homologous region), which could be integrated into the P. pastoris genome via homologous recombination. After transferring double-cross-over recombinants to methanol induction medium, transient expression of Cre recombinase caused the recombination of lox71-Cre-ZeoR-lox66 fragment into a double-mutant lox72 site, thus excising the Cre-ZeoR cassette from the P. pastoris genome. As the double-mutant lox72 site displays strongly reduced binding affinity for Cre recombinase, this method could be used sequentially to disrupt P. pastoris genes without introducing selectable markers. The effectiveness of this strategy was verified by introducing both single and double gene deletions into the P. pastoris genome.


Subject(s)
Fungal Proteins/genetics , Gene Deletion , Genetic Markers/genetics , Integrases/metabolism , Pichia/genetics , Gene Targeting , Polymerase Chain Reaction , Recombination, Genetic
15.
Sheng Wu Gong Cheng Xue Bao ; 23(5): 789-93, 2007 Sep.
Article in Chinese | MEDLINE | ID: mdl-18051853

ABSTRACT

Atrazine could be used as the sole carbon, nitrogen and energy sources for growth by strain Arthrobacter sp. AG1, and the atrazine-degrading genes of AG1 were found to be the combination of trzN, atzB and atzC. The atrazine chloride hydrolysase gene trzN was cloned by PCR amplification,whose sequence shared 99% identity with that of Norcardioides sp. C190. Two large plasmids were found in AG1,and trzN and atzB were confirmed to be localized on the larger plasmid pAG1 by the method of southern hybridization. Subculture of AG1 in liquid LB for three generations, 34% of the subsequent cells were found to lose degrading activity, however, neither plasmid was lost. PCR amplification results showed that the mutants had only lost the trzN gene instead of atzB and atzC. It was deduced that mutation might be due to the trzN gene deletion from the plasmid. This study provided new evidence that atrazine metabolic genotypes were resulted from horizontal gene transfer between different bacteria under environmental selective pressure.


Subject(s)
Arthrobacter/genetics , Atrazine/metabolism , Genes, Bacterial/genetics , Biodegradation, Environmental , Herbicides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...