Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(21): 213602, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32530701

ABSTRACT

Two coupled nanolasers exhibit a mode switching transition, theoretically described by mode beating limit cycle oscillations. Their decay rate is vanishingly small in the thermodynamic limit, i.e., when the spontaneous emission noise tends to zero. We provide experimental statistical evidence of mesoscopic limit cycles (∼10^{3} intracavity photons). Specifically, we show that the order parameter quantifying the limit cycle amplitude can be reconstructed from the mode intensity statistics. We observe a maximum of the averaged amplitude at the mode switching, accounting for limit cycle oscillations. We finally relate this maximum to a dip of mode cross-correlations, reaching a minimum of g_{ij}^{(2)}=2/3, which we show to be a mesoscopic limit. Coupled nanolasers are thus an appealing test bed for the investigation of spontaneous breaking of time translation symmetry in the presence of strong quantum fluctuations.

2.
Nano Lett ; 12(6): 2953-8, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22624846

ABSTRACT

Experimental restrictions imposed on the collection and detection of shortwave-infrared photons (SWIR) have impeded single molecule work on a large class of materials whose optical activity lies in the SWIR. Here we report the successful observation of room-temperature single nanocrystal photoluminescence at SWIR wavelengths using a highly efficient multielement superconducting nanowire single photon detector. We confirm that the photoluminescence from single lead sulfide nanocrystals is strongly antibunched, demonstrating the feasibility of performing sophisticated photon correlation experiments on individual weak SWIR emitters, and, more broadly, paving the way for sensitive measurements of spectral observables on infrared quantum systems that are incompatible with current detection techniques.


Subject(s)
Nanostructures/chemistry , Nanostructures/radiation effects , Photometry/methods , Spectrophotometry, Infrared/methods , Infrared Rays , Materials Testing , Particle Size , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...