Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Life Sci ; 348: 122687, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38718856

ABSTRACT

AIMS: Checkpoint blockade immunotherapy is a promising therapeutic modality that has revolutionized cancer treatment; however, the therapy is only effective on a fraction of patients due to the tumor environment. In tumor immunotherapy, the cGAS-STING pathway is a crucial intracellular immune response pathway. Therefore, this study aimed to develop an immunotherapy strategy based on the cGAS-STING pathway. MATERIALS AND METHODS: The physicochemical properties of the nanoparticles EM@REV@DOX were characterized by TEM, DLS, and WB. Subcutaneous LLC xenograft tumors were used to determine the biodistribution, antitumor efficacy, and immune response. Blood samples and tissues of interest were harvested for hematological analysis and H&E staining. SIGNIFICANCE: Overall, our designed nanovesicles provide a new perspective on tumor immunotherapy by ICD and cGAS-STING pathway, promoting DCs maturation, macrophage polarization, and activating T cells, offering a meaningful strategy for accelerating the clinical development of immunotherapy. KEY FINDINGS: EM@REV@DOX accumulated in the tumor site through EPR and homing targeting effect to release REV and DOX, resulting in DNA damage and finally activating the cGAS-STING pathway, thereby promoting DCs maturation, macrophage polarization, and activating T cells. Additionally, EM@REV@DOX increased the production of pro-inflammatory cytokines (e.g., TNF-α and IFN-ß). As a result, EM@REV@DOX was effective in treating tumor-bearing mice and prolonged their lifespans. When combined with αPD-L1, EM@REV@DOX significantly inhibited distant tumor growth, extended the survival of mice, and prevented long-term postoperative tumor metastasis, exhibiting great potential in antitumor immunotherapy.


Subject(s)
Immunotherapy , Membrane Proteins , Nanoparticles , Nucleotidyltransferases , Animals , Nucleotidyltransferases/metabolism , Mice , Membrane Proteins/metabolism , Immunotherapy/methods , Nanoparticles/chemistry , Humans , Signal Transduction , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Cell Line, Tumor , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Female , Xenograft Model Antitumor Assays , Immunogenic Cell Death/drug effects
2.
Clin Transl Oncol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642258

ABSTRACT

BACKGROUND: Transmembrane protein 92 (TMEM92) has been implicated in the facilitation of tumor progression. Nevertheless, comprehensive analyses concerning the prognostic significance of TMEM92, as well as its role in immunological responses across diverse cancer types, remain to be elucidated. METHODS: In this study, data was sourced from a range of publicly accessible online platforms and databases, including TCGA, GTEx, UCSC Xena, CCLE, cBioPortal, HPA, TIMER2.0, GEPIA, CancerSEA, GDSC, exoRBase, and ImmuCellAI. We systematically analyzed the expression patterns of TMEM92 at both mRNA and protein levels across diverse human organs, tissues, extracellular vesicles (EVs), and cell lines associated with multiple cancer types. Subsequently, analyses were conducted to determine the relationship between TMEM92 and various parameters such as prognosis, DNA methylation, copy number variation (CNV), the tumor microenvironment (TME), immune cell infiltration, genes with immunological relevance, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and half-maximal inhibitory concentration (IC50) values. RESULTS: In the present study, we observed a pronounced overexpression of TMEM92 across a majority of cancer types, which was concomitantly associated with a less favorable prognosis. A notable association emerged between TMEM92 expression and both DNA methylation and CNV. Furthermore, a pronounced relationship was discerned between TMEM92 expression, the TME, and the degree of immune cell infiltration. Intriguingly, while TMEM92 expression displayed a positive correlation with macrophage presence, it inversely correlated with the infiltration level of CD8 + T cells. Concurrently, significant associations were identified between TMEM92 and the major histocompatibility complex, TMB, MSI, and MMR. Results derived from Gene Set Enrichment Analysis and Gene Set Variation Analysis further substantiated the nexus of TMEM92 with both immune and metabolic pathways within the oncogenic context. CONCLUSIONS: These findings expanded the understanding of the roles of TMEM92 in tumorigenesis and progression and suggest that TMEM92 may have an immunoregulatory role in several malignancies.

3.
SAGE Open Med Case Rep ; 12: 2050313X241241216, 2024.
Article in English | MEDLINE | ID: mdl-38524381

ABSTRACT

We present three novel cases of tracheobronchial foreign bodies (TFBs) in children caused by pen caps. One was removed by the rigid bronchoscopy successfully, the second was removed by rigid bronchoscopy combined with tracheotomy, and the last one was treated by bronchotomy from an external thoracic approach. Rigid bronchoscopy is the most widely used for treating TFBs in clinics, especially treating large and special foreign bodies, because rigid bronchoscopy can provide a good view for observation and operation. Successful removal of a foreign body under rigid bronchoscopy (an experienced doctor, suitable instruments, etc.) can obviate tracheotomy/tracheostomy or thoracotomy/bronchotomy.

4.
Br J Cancer ; 129(12): 1877-1892, 2023 12.
Article in English | MEDLINE | ID: mdl-37794178

ABSTRACT

Thioredoxin-interacting protein (TXNIP) is commonly considered a master regulator of cellular oxidation, regulating the expression and function of Thioredoxin (Trx). Recent work has identified that TXNIP has a far wider range of additional roles: from regulating glucose and lipid metabolism, to cell cycle arrest and inflammation. Its expression is increased by stressors commonly found in neoplastic cells and the wider tumor microenvironment (TME), and, as such, TXNIP has been extensively studied in cancers. In this review, we evaluate the current literature regarding the regulation and the function of TXNIP, highlighting its emerging role in modulating signaling between different cell types within the TME. We then assess current and future translational opportunities and the associated challenges in this area. An improved understanding of the functions and mechanisms of TXNIP in cancers may enhance its suitability as a therapeutic target.


Subject(s)
Neoplasms , Thioredoxins , Humans , Carrier Proteins/genetics , Carrier Proteins/metabolism , Glucose , Inflammation , Neoplasms/immunology , Neoplasms/metabolism , Oxidation-Reduction , Thioredoxins/metabolism , Tumor Microenvironment
5.
Anal Chem ; 95(42): 15486-15496, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37820297

ABSTRACT

The process of peak picking and quality assessment for multiple reaction monitoring (MRM) data demands significant human effort, especially for signals with low abundance and high interference. Although multiple peak-picking software packages are available, they often fail to detect peaks with low quality and do not report cases with low confidence. Furthermore, visual examination of all chromatograms is still necessary to identify uncertain or erroneous cases. This study introduces HeapMS, a web service that uses artificial intelligence to assist with peak picking and the quality assessment of MRM chromatograms. HeapMS applies a rule-based filter to remove chromatograms with low interference and high-confidence peak boundaries detected by Skyline. Additionally, it transforms two histograms (representing light and heavy peptides) into a single encoded heatmap and performs a two-step evaluation (quality detection and peak picking) using image convolutional neural networks. HeapMS offers three categories of peak picking: uncertain peak picking that requires manual inspection, deletion peak picking that requires removal or manual re-examination, and automatic peak picking. HeapMS acquires the chromatogram and peak-picking boundaries directly from Skyline output. The output results are imported back into Skyline for further manual inspection, facilitating integration with Skyline. HeapMS offers the benefit of detecting chromatograms that should be deleted or require human inspection. Based on defined categories, it can significantly reduce human workload and provide consistent results. Furthermore, by using heatmaps instead of histograms, HeapMS can adapt to future updates in image recognition models. The HeapMS is available at: https://github.com/ccllabe/HeapMS.


Subject(s)
Algorithms , Artificial Intelligence , Humans , Proteomics , Neural Networks, Computer , Software
6.
Theranostics ; 13(14): 5057-5074, 2023.
Article in English | MEDLINE | ID: mdl-37771767

ABSTRACT

Background: Recently years have seen the increasing evidence identifying that OXPHOS is involved in different processes of tumor progression and metastasis and has been proposed to be a potential therapeutical target for cancer treatment. However, the exploration in oxidative phosphorylation-mediated chemoresistance is still scarce. In our study, we identify exosomal transfer leads to chemoresistance by reprogramming metabolic phenotype in recipient cells. Methods: RNA sequencing analysis was used to screen altered targets mediating exosome transfer-induced chemoresistance. Seahorse assay allowed us to measure mitochondrial respiration. Stemness was measured by spheroids formation assay. Serum exosomes were isolated for circ_0001610 quantification. Results: The induced oxidative phosphorylation leads to more stem-like properties, which is dependent on the transfer of exosomal circ_0001610. Exosome transfer results in the removal of miR-30e-5p-mediated suppression of PGC-1a, a master of mitochondrial biogenesis and function. Consequently, increased PGC-1a reshapes cellular metabolism towards oxidative phosphorylation, leading to chemoresistance. Inhibition of OXPHOS or exosomal si-circ_0001610 increases the sensitivity of chemotherapy by decreasing cell stemness in vitro and in vivo. Conclusion: Our data suggests that exosomal circ_0001610-induced OXPHOS plays an important role in chemoresistance and supports a therapeutical potential of circ_0001610 inhibitors in the treatment of oxaliplatin-resistant colorectal cancer by manipulating cell stemness.


Subject(s)
Colorectal Neoplasms , Exosomes , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Phosphorylation , Drug Resistance, Neoplasm/genetics , Oxaliplatin , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Exosomes/metabolism , Cell Line, Tumor , Cell Proliferation/genetics
7.
Microsyst Nanoeng ; 9: 108, 2023.
Article in English | MEDLINE | ID: mdl-37654693

ABSTRACT

Electrothermal bimorph-based scanning micromirrors typically employ standard silicon dioxide (SiO2) as the electrothermal isolation material. However, due to the brittle nature of SiO2, such micromirrors may be incapable to survive even slight collisions, which greatly limits their application range. To improve the robustness of electrothermal micromirrors, a polymer material is incorporated and partially replaces SiO2 as the electrothermal isolation and anchor material. In particular, photosensitive polyimide (PSPI) is used, which also simplifies the fabrication process. Here, PSPI-based electrothermal micromirrors have been designed, fabricated, and tested. The PSPI-type micromirrors achieved an optical scan angle of ±19.6° and a vertical displacement of 370 µm at only 4 Vdc. With a mirror aperture size of 1 mm × 1 mm, the PSPI-type micromirrors survived over 200 g accelerations from either vertical or lateral directions in impact experiments. In the drop test, the PSPI-type micromirrors survived falls to a hard floor from heights up to 21 cm. In the standard frequency sweeping vibration test, the PSPI-type micromirrors survived 21 g and 29 g acceleration in the vertical and lateral vibrations, respectively. In all these tests, the PSPI-type micromirrors demonstrated at least 4 times better robustness than SiO2-type micromirrors fabricated in the same batch.

8.
Cell Mol Life Sci ; 80(10): 284, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37688644

ABSTRACT

Alpha-synuclein (aSyn) aggregation spreads between cells and underlies the progression of neuronal lesions in the brain of patients with synucleinopathies such as Parkinson's diseases. The mechanisms of cell-to-cell propagation of aggregates, which dictate how aggregation progresses at the network level, remain poorly understood. Notably, while prion and prion-like spreading is often simplistically envisioned as a "domino-like" spreading scenario where connected neurons sequentially propagate protein aggregation to each other, the reality is likely to be more nuanced. Here, we demonstrate that the spreading of preformed aSyn aggregates is a limited process that occurs through molecular sieving of large aSyn seeds. We further show that this process is not facilitated by synaptic connections. This was achieved through the development and characterization of a new microfluidic platform that allows reconstruction of binary fully oriented neuronal networks in vitro with no unwanted backward connections, and through the careful quantification of fluorescent aSyn aggregates spreading between neurons. While this allowed us for the first time to extract quantitative data of protein seeds dissemination along neural pathways, our data suggest that prion-like dissemination of proteinopathic seeding aggregates occurs very progressively and leads to highly compartmentalized pattern of protein seeding in neural networks.


Subject(s)
Prions , Synucleinopathies , Humans , alpha-Synuclein , Synapses , Neural Networks, Computer
10.
Sci Rep ; 13(1): 12432, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528213

ABSTRACT

Community-acquired pneumonia (CAP) is one of the main reasons of mortality and morbidity in elderly population, causing substantial clinical and economic impacts. However, clinically available score systems have been shown to demonstrate poor prediction of mortality for patients aged over 65. Especially, no existing clinical model can predict morbidity and mortality for CAP patients among different age stages. Here, we aimed to understand the impact of age variable on the establishment of assessment model and explored prognostic factors and new biomarkers in predicting mortality. We retrospectively analyzed elderly patients with CAP in Minhang Hospital, Fudan University. We used univariate and multiple logistic regression analyses to study the prognostic factors of mortality in each age-based subgroup. The prediction accuracy of the prognostic factors was determined by the Receiver Operating Characteristic curves and the area under the curves. Combination models were established using several logistic regressions to save the predicted probabilities. Four factors with independently prognostic significance were shared among all the groups, namely Albumin, BUN, NLR and Pulse, using univariate analysis and multiple logistic regression analysis. Then we built a model with these 4 variables (as ABNP model) to predict the in-hospital mortality in all three groups. The AUC value of the ABNP model were 0.888 (95% CI 0.854-0.917, p < 0.000), 0.912 (95% CI 0.880-0.938, p < 0.000) and 0.872 (95% CI 0.833-0.905, p < 0.000) in group 1, 2 and 3, respectively. We established a predictive model for mortality based on an age variable -specific study of elderly patients with CAP, with higher AUC value than PSI, CURB-65 and qSOFA in predicting mortality in different age groups (66-75/ 76-85/ over 85 years).


Subject(s)
Community-Acquired Infections , Pneumonia , Humans , Aged , Aged, 80 and over , Retrospective Studies , ROC Curve , Prognosis , Biomarkers , Severity of Illness Index
11.
J Cancer ; 14(10): 1809-1836, 2023.
Article in English | MEDLINE | ID: mdl-37476180

ABSTRACT

Background: Transgelin-2 (TAGLN2) has long been regarded as an actin-binding protein that modulates actin gelation and controls actin cytoskeleton dynamics. However, recent studies have reported that TAGLN2 can directly or indirectly participate in multiple cancer-related processes, including cell migration, proliferation, differentiation, and apoptosis. To further investigate the role of TAGLN2 in carcinogenesis, a comprehensive analysis was launched to evaluate the expression status and prognostic value of TAGLN2 in pan-cancer. Methods: Herein, data was retrieved from publicly online websites and databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), UCSC Xena, cBioPortal, Human Protein Atlas (HPA), TIMER2.0, CancerSEA, GDSC, and ImmuCellAI. Gene expression pattern and its correlation with prognosis were assessed across cancer types. Moreover, an analysis was conducted to explore the relationships between TAGLN2 and methylation, copy number values (CNVs), tumor microenvironment (TME), immune cell infiltration, immune-relevance genes, tumor mutation burden (TMB), microsatellite instability (MSI), and IC50. Additionally, R package "clusterProfiler" was utilized to perform enrichment analysis on TAGLN2. Finally, the ability of TAGLN2 as an oncogene was preliminarily verified in vitro in UCEC. Results: Our findings revealed that TAGLN2 was specifically overexpressed and related to an unfavorable prognosis in most cancers. There was a significant connection between TAGLN2 expression and methylation and CNVs. Besides, we identified TAGLN2 correlated to TME, immune cell infiltration, immune-relevant genes, TMB, and MSI, suggesting an immunoregulatory role in cancers. Notably, TAGLN2 expression showed a positive correlation with macrophages, and cancer-associated fibroblasts, whereas a negative correlation with the infiltration degree of B cells. Mechanically, the results obtained from Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) provided theory-supportive evidence that TAGLN2 interlinkages with immunity and programmed cell death. Overall, anti-tumor drugs were overtly associated with TAGLN2 dysregulation among diverse cancers. At last, UCEC cell lines with TAGLN2-depleting had an inhibition of the migration and invasion ability. Conclusions: These findings enriched the knowledge about the role of TAGLN2 in tumorigenesis and progression, revealing TAGLN2 may serve as a potential therapeutic strategy for various malignancies.

12.
J Biol Chem ; 299(4): 103068, 2023 04.
Article in English | MEDLINE | ID: mdl-36842500

ABSTRACT

µ-Conotoxin KIIIA, a selective blocker of sodium channels, has strong inhibitory activity against several Nav isoforms, including Nav1.7, and has potent analgesic effects, but it contains three pairs of disulfide bonds, making structural modification difficult and synthesis complex. To circumvent these difficulties, we designed and synthesized three KIIIA analogues with one disulfide bond deleted. The most active analogue, KIIIA-1, was further analyzed, and its binding pattern to hNav1.7 was determined by molecular dynamics simulations. Guided by the molecular dynamics computational model, we designed and tested 32 second-generation and 6 third-generation analogues of KIIIA-1 on hNav1.7 expressed in HEK293 cells. Several analogues showed significantly improved inhibitory activity on hNav1.7, and the most potent peptide, 37, was approximately 4-fold more potent than the KIIIA Isomer I and 8-fold more potent than the wildtype (WT) KIIIA in inhibiting hNav1.7 current. Intraperitoneally injected 37 exhibited potent in vivo analgesic activity in a formalin-induced inflammatory pain model, with activity reaching ∼350-fold of the positive control drug morphine. Overall, peptide 37 has a simplified disulfide-bond framework and exhibits potent in vivo analgesic effects and has promising potential for development as a pain therapy in the future.


Subject(s)
Analgesics , Conotoxins , NAV1.7 Voltage-Gated Sodium Channel , Voltage-Gated Sodium Channel Blockers , Humans , Analgesics/pharmacology , Analgesics/chemistry , Conotoxins/chemistry , Conotoxins/pharmacology , Disulfides/metabolism , HEK293 Cells , Molecular Dynamics Simulation , Pain/chemically induced , Pain/drug therapy , Peptides/pharmacology , Peptides/metabolism , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacology
13.
Br J Cancer ; 128(4): 665-677, 2023 02.
Article in English | MEDLINE | ID: mdl-36522479

ABSTRACT

BACKGROUND: Doxorubicin resistance represents a major clinical challenge for treating patients with advanced breast cancer (BC). Exosomes, exchanging genetic cargo between heterogeneous populations of tumour cells, have been proposed to mediate drug resistance and cancer progression in other cancer types. However, their specific role in mediating doxorubicin resistance in BC remains unclear. Here, we demonstrate the important role of exosomal miR-181b-5p (exo-miR-181b-5p) in mediating doxorubicin resistance. METHODS: Small-RNA sequencing and bioinformatic analyses were used to screen miRNAs mediating doxorubicin resistance in BC, which were further verified by RT-qPCR. SA-ß-gal staining assays allowed us to measure cellular senescence. Exosomes from patients' serum before and after neoadjuvant chemotherapy were isolated for exo-miR-181b-5p quantification. RESULTS: Doxorubicin-resistant BC cell lines exhibited upregulated exosomal miR-181b-5p. Addition of exo-miR-181b-5p actively fused with recipient cells and transferred a drug-resistant phenotype. Overexpression of miR-181b-5p downregulated p53/p21 levels and inhibited doxorubicin-induced G1 arrest and senescence by suppressing BCLAF1 expression in vitro. Further, in vivo experiments showed treatment of exo-miR-181b-5p inhibitors exhibited superior tumour control and reversed the doxorubicin-resistance phenotype, accompanied with increased tumoral BCLAF1. CONCLUSION: Our data suggests exo-miR-181b-5p as a prognostic biomarker and a therapeutic potential for exo-miR-181b-5p inhibitors in the treatment of doxorubicin-resistant BC patients.


Subject(s)
Exosomes , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , Doxorubicin/pharmacology , Neoplasms/pathology , Exosomes/genetics , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism
14.
Cancers (Basel) ; 14(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36497253

ABSTRACT

Breast cancer (BRCA) remains a serious threat to women's health, with the rapidly increasing morbidity and mortality being possibly due to a lack of a sophisticated classification system. To date, no reliable biomarker is available to predict prognosis. Cuproptosis has been recently identified as a new form of programmed cell death, characterized by the accumulation of copper in cells. However, little is known about the role of cuproptosis in breast cancer. In this study, a cuproptosis-related genes (CRGs) risk model was constructed, based on transcriptomic data with corresponding clinical information relating to breast cancer obtained from both the TCGA and GEO databases, to assess the prognosis of breast cancer by comprehensive bioinformatics analyses. The CRGs risk model was constructed and validated based on the expression of four genes (NLRP3, LIPT1, PDHA1 and DLST). BRCA patients were then divided into two subtypes according to the CRGs risk model. Furthermore, our analyses revealed that the application of this risk model was significantly associated with clinical outcome, immune infiltrates and tumor mutation burden (TMB) in breast cancer patients. Additionally, a new clinical nomogram model based on risk score was established and showed great performance in overall survival (OS) prediction, confirming the potential clinical significance of the CRGs risk model. Collectively, our findings revealed that the CRGs risk model can be a useful tool to stratify subtypes and that the cuproptosis-related signature plays an important role in predicting prognosis in BRCA patients.

15.
Front Med (Lausanne) ; 9: 976148, 2022.
Article in English | MEDLINE | ID: mdl-36300178

ABSTRACT

Background: The incidence and mortality rate of community-acquired pneumonia (CAP) in elderly patients were higher than the younger population. The assessment tools including CURB-65 and qSOFA have been applied in early detection of high-risk patients with CAP. However, several disadvantages exist to limit the efficiency of these tools for accurate assessment in elderly CAP. Therefore, we aimed to explore a more comprehensive tool to predict mortality in elderly CAP population by establishing a nomogram model. Methods: We retrospectively analyzed elderly patients with CAP in Minhang Hospital, Fudan University. The least absolute shrinkage and selection operator (LASSO) logistic regression combined with multivariate analyses were used to select independent predictive factors and established nomogram models via R software. Calibration plots, decision curve analysis (DCA) and receiver operating characteristic curve (ROC) were generated to assess predictive performance. Results: LASSO and multiple logistic regression analyses showed the age, pulse, NLR, albumin, BUN, and D-dimer were independent risk predictors. A nomogram model (NB-DAPA model) was established for predicting mortality of CAP in elderly patients. In both training and validation set, the area under the curve (AUC) of the NB-DAPA model showed superiority than CURB-65 and qSOFA. Meanwhile, DCA revealed that the predictive model had significant net benefits for most threshold probabilities. Conclusion: Our established NB-DAPA nomogram model is a simple and accurate tool for predicting in-hospital mortality of CAP, adapted for patients aged 65 years and above. The predictive performance of the NB-DAPA model was better than PSI, CURB-65 and qSOFA.

16.
Clin Interv Aging ; 17: 1379-1391, 2022.
Article in English | MEDLINE | ID: mdl-36164658

ABSTRACT

Purpose: The study explores a clinical model based on aging-care parameters to predict the mortality of hospitalized patients aged 80-year and above with community-acquired pneumonia (CAP). Patients and methods: In this study, four hundred and thirty-five CAP patients aged 80-years and above were enrolled in the Central Hospital of Minhang District, Shanghai during 01,01,2018-31,12,2021. The clinical data were collected, including aging-care relevant factors (ALB, FRAIL, Barthel Index and age-adjusted Charlson Comorbidity Index) and other commonly used factors. The prognostic factors were screened by multivariable logistic regression analysis. Receiver operating characteristic (ROC) curves were used to predict the mortality risk. Results: Univariate analysis demonstrated that several factors, including gender, platelet distribution width, NLR, ALB, CRP, pct, pre-albumin, CURB-65, low-density, lipoprotein, Barthel Index, FRAIL, leucocyte count, neutrophil count, lymphocyte count and aCCI, were associated with the prognosis of CAP. Multivariate model analyses further identified that CURB-65 (p < 0.0001, OR = 5.44, 95% CI = 3.021-10.700), FRAIL (p < 0.0001, OR = 5.441, 95% CI = 2.611-12.25) and aCCI (p = 0.003, OR = 1.551, 95% CI = 1.165-2.099) were independent risk factors, whereas ALB (p = 0.005, OR = 0.871, 95% CI = 0.788-0.957) and Barthel Index (p = 0.0007, OR = 0.958, 95% CI = 0.933-0.981) were independent protective factors. ROC curves were plotted to further predict the in-hospital mortality and revealed that combination of three parameters (Barthel Index+ FRAI +CURB-65) showed the best performance. Conclusion: This study showed that CURB-65, frailty and aCCI were independent risk factors influencing prognosis. In addition, ALB and Barthel Index were protective factors for in CAP patients over 80-years old. AUC was calculated and revealed that combination of three parameters (Barthel Index+ FRAI +CURB-65) showed the best performance.


Subject(s)
Community-Acquired Infections , Health Services for the Aged , Pneumonia , Aged, 80 and over , Aging , China , Community-Acquired Infections/diagnosis , Community-Acquired Infections/therapy , Humans , Pneumonia/diagnosis , Pneumonia/therapy , Prognosis , ROC Curve , Retrospective Studies , Severity of Illness Index
17.
Foods ; 11(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35267297

ABSTRACT

To investigate the mechanism of the texture formed by protein thermal denaturation, the profile and formation of texture and thermal denaturation of protein were evaluated using texture profile analysis (TPA) and transmission electron microscopy (TEM) combined with differential scanning calorimeter (DSC). Results indicated that the surface temperature of Beijing roast duck increased from 23.9 to 174.4 °C, while the center temperature rose from 20.6 to 99.3 °C during roasting. Shear force decreased significantly during the first 20 min, and the texture profile largely changed at 20 and 40 min. Firstly, Band I was broken and twisted, Band A was overstruck, and Z-line was diffused and finally disappeared, resulting in a blurred myofibril structure. The sarcomere considerably contracted within 30 min. Secondly, the main myofibrillar proteins were denatured at 20 and 40 min, respectively. The formation of hydrophobic interactions and the reduction of ionic bonds were observed. Thirdly, roasting induced protein thermal denaturation, which was correlated with interprotein forces, texture profile, and the shear force. Muscle fibers were damaged and shrunken, accompanied by the formation of hydrophobic interactions and the reduction of ionic bonds. The turning points were at 20 and 40 min, and the main proteins were denatured, leading to the formation of tenderness of Beijing roast duck.

18.
Gland Surg ; 11(2): 341-351, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35284315

ABSTRACT

Background: This study investigated the socioeconomic and clinical factors affecting the proportion of breast conserving surgery (BCS) in China, to improve the proportion and success rate of BCS in Chinese breast cancer patients. Methods: Six hundred and forty breast cancer patients treated with BCS were compared with 700 selected breast cancer patients (controls) treated with modified radical mastectomy (MRM) in Tianjin Medical University Cancer Institute and Hospital from January 2005 to January 2018. Patients' socioeconomic and clinical factors were collected through telephone interviews or face-to-face interviews. A total of 5,660 BCS patients were enrolled to analyze independent factors affecting initial positive margins. Chi-squared test and multiple logistic regressions were used to examine factors associated with BCS. The locoregional recurrence-free survival (LRRFS), distant metastasis-free survival (DMFS), and overall survival (OS) were calculated using the Kaplan-Meier method and the survival distribution between BCS and MRM groups was compared by log-rank test. Results: Breast cancer patients who were younger, lived in urban areas, had medical insurance, and higher levels of education and Personal income were more likely to choose BCS. We also observed that patients of Han nationality were more likely to choose BCS. Univariate analysis showed that the frozen section analysis (FSA) positive margin was significantly correlated with tumor distance from the nipple, preoperative magnetic resonance imaging (MRI) examination, T stage, pathological subtype, and lymphovascular invasion (LVI). Multivariate analysis showed the distance from the nipple, T stage, pathological subtype, and LVI, and no preoperative MRI examination were independent predictors of positive resection margins. Multivariate analysis of the correlation between MRI findings and positive resection margins revealed that tumor size, non-mass enhancement (NME), and malignant enhancement surrounding the tumor were independent predictors of positive resection margins. Conclusions: In China, socioeconomic factors largely influence the choice of surgical procedures for breast cancer patients. A gradual reduction in the influence of socioeconomic factors on the proportion of BCS is recommended. Furthermore, preoperative MRI should be encouraged in patients preparing for BCS. Clinicopathological characteristics and MRI findings are significantly associated with a positive resection margin in breast cancer patients.

19.
Light Sci Appl ; 11(1): 59, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35288540

ABSTRACT

As a primary anticounterfeiting technology, most paper anticounterfeiting devices take advantage of photoresponsive behaviors of certain security materials or structures, thus featuring low-security threshold, which has been a critical global issue. To incorporate optoelectronic devices into existing anticounterfeiting technology suggests a feasible avenue to address this challenge. Here we report a high-performance organic light-emitting paper-based flexible anticounterfeiting (FAC) device with multiple stimuli-responsiveness, including light, electricity, and their combination. Without sacrificing the preexisted security information on the paper, we fabricate FAC device in a facile, low-cost yet high-fidelity fashion by integrating patterned electro-responsive and photo-responsive organic emitters onto paper substrates. By introducing optical microcavities, the FAC device shows considerable color shift upon different viewing angle and applied voltage, which is easily discernible by naked eyes. Notably, the FAC device is bendable, unclonable, and durable (a half-lifetime over 4000 hours at 100 cd m-2).

20.
iScience ; 25(2): 103782, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35146395

ABSTRACT

Paper substrate has many advantages, such as low cost, bendable, foldable, printable, and environmentally friendly recycling. Nowadays, paper has been further extended as a flexible platform to deliver electronic information with the integration of organic optoelectronic devices, such as organic thin-film transistor, organic solar cell, organic electrochromic device, and organic light-emitting device. It has great potential to become the new generation of flexible substrate. Given rough surface and porous of paper, many efforts have been underway in recent years to enable the compatibility between optoelectronics and paper substrate. In this review, we present the development history of paper and its physicochemical properties, and summarize the current development of paper-based organic optoelectronic devices. We also discuss the challenges that need to be addressed before practical uses of paper-based organic optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...