Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Recent Pat Nanotechnol ; 14(1): 56-63, 2020.
Article in English | MEDLINE | ID: mdl-31746300

ABSTRACT

BACKGROUND: Wastewater involving a lot of contaminants like organic dyes from the textile finishing industry causes a greater adverse impact on human beings. There are many patents on nanofibers involved metallic oxides, this paper studies photocatalytic degradation of free-pollution Zinc Oxide (ZnO) nanomaterials on dye decontamination. OBJECTIVE: Polyacrylonitrile (PAN) nanofibrous membranes loaded with Zinc Oxide (ZnO) nanowires were fabricated and evaluated for photocatalytic degradation. METHODS: In this work, Polyacrylonitrile (PAN) nanofibrous membranes loaded with ZnO seeds were prepared by electrospinning PAN/Zn (Ac)2 solution followed by a thermal decomposition process. ZnO nanowires were hydrothermally grown on the surface of PAN nanofibers. The effects of the ratio of PAN and zinc acetate in a solution, decomposition temperature and ammonia (NH4OH) on the morphologies of ZnO nanowires were observed. ZnO nanowires showed the optimum morphologies when the ratio of PAN/Zn (Ac)2 was 10:1.5. The decomposition temperature was 150oC, and NH4OH was added in the hydrothermal reaction. The photocatalytic degradation of Rhodamine B solution under UV irradiation was used as a model reaction. The photodegradation ability of the ZnO @PAN membrane doped with cerium (Sm) was also investigated. RESULTS: Slight Sm doping increased the photocatalytic degradation rate from 57% to 89% under ultraviolet light irradiation for 2h. After 5 times of cycling under the same conditions, it still maintained the dye decolorization rate that was above 65%. CONCLUSION: Sm doped ZnO nanowires @PAN nanofibrous membranes were easily produced and could provide a novel process for the degradation of dye decontamination.

SELECTION OF CITATIONS
SEARCH DETAIL
...