Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.937
Filter
1.
Angew Chem Int Ed Engl ; : e202403258, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721770

ABSTRACT

BRD4 protein plays a pivotal role in cell cycle regulation and differentiation. Disrupting the activity of BRD4 has emerged as a promising strategy for inhibiting the growth and proliferation of cancer cells. Herein, we introduced a BRD4-targeting photothermal agent for controlled protein degradation, aiming to enhance low-temperature photothermal therapy (PTT) for cancer treatment. By incorporating a BRD4 protein inhibitor into a cyanine dye scaffold, the photothermal agent specifically bond to the bromodomain of BRD4. Upon low power density laser irradiation, the agent induced protein degradation, directly destroying the BRD4 structure and inhibiting its transcriptional regulatory function. This strategy not only prolonged the retention time of the photothermal agent in cancer cells but also confined the targeted protein degradation process solely to the tumor tissue, minimizing side effects on normal tissues through the aid of exogenous signals. This work established a simple and feasible platform for future PTT agent design in clinical cancer treatment.

2.
Clin Nurs Res ; : 10547738241253652, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767246

ABSTRACT

This study aimed to explore whether differences exist in anesthesia care providers' use of intraoperative medication between African American and non-Hispanic White patients in adult surgical patients who underwent noncardiothoracic nonobstetric surgeries with general anesthesia. A retrospective observational cohort study used electronic health records between January 1, 2018 and August 31, 2019 at a large academic health system in the southeastern United States. To evaluate the isolated impact of race on intraoperative medication use, inverse probability of treatment weighting using the propensity scores was used to balance the covariates between African American and non-Hispanic White patients. Regression analyses were then performed to evaluate the impact of race on the total dose of opioid analgesia administered, and the use of midazolam, sugammadex, antihypotensive drugs, and antihypertensive drugs. Of the 31,790 patients included in the sample, 58.9% were non-Hispanic Whites and 13.6% were African American patients. After adjusting for significant covariates, African American patients were more likely to receive midazolam premedication (p < .0001; adjusted odds ratio [aOR] = 1.17, 99.9% CI [1.06, 1.30]), and antihypertensive drugs (p = .0002; aOR = 1.15, 99.9% CI [1.02, 1.30]), and less likely to receive antihypotensive drugs (p < .0001; aOR = 0.85, 99.9% CI [0.76, 0.95]) than non-Hispanic White patients. However, we did not find significant differences in the total dose of opioid analgesia administered, or sugammadex. This study identified differences in intraoperative anesthesia care delivery between African American and non-Hispanic White patients; however, future research is needed to understand mechanisms that contribute to these differences and whether these differences are associated with patient outcomes.

3.
Curr Microbiol ; 81(6): 162, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703324

ABSTRACT

A facultatively anaerobic, Gram-negative, curved rod-shaped bacterium (4.0-17.0 µm long, 0.6-0.9 µm wide), designated Z1-6T, was obtained from tidal flat sediment collected from YueAo village in Zhoushan, Zhejiang, People's Republic of China. Strain Z1-6T occurred at 15-45 °C (optimum 28-32 °C), pH 6.0-9.0 (optimum 7.0-7.5), and in the presence of 1-5% (w/v) NaCl (optimum 1-2%). The strain contained iso-C15:0 and antesio-C15:0 as the major fatty acids. An unsaturated menaquinone with seven isoprene units (MK-7) was the predominant respiratory quinone. The polar lipids included phosphatidylethanolamine (PE), one aminophospholipid (APL), two phospholipids (PL1 and PL2), three glycolipids (GL1, GL2, and GL3), and two unidentified lipids (L1 and L2). The genomic DNA G+C content of strain Z1-6T was 39.2%, and the genome size was 6.4 Mb. The strain showed the highest average nucleotide identity (ANI) value of 73.5-74.6%, digital DNA-DNA hybridization (dDDH) value of 19.3-20%, average amino acid identity (AAI) value of 72.0-73.1% with the members of genus Draconibacterium. Phylogenetic analysis based on 16S rRNA gene sequences and genome revealed that strain Z1-6T formed a distinct branch in the clade of the genus Draconibacterium. Based on the phenotypic, phylogenetic, chemotaxonomic analyses and genomic data, strain Z1-6T represents a novel species of the genus Draconibacterium, for which the name Draconibacterium aestuarii sp. nov. (The type strain Z1-6T = MCCC 1K07533T = KCTC 92310T) is proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Glycolipids , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Geologic Sediments/microbiology , Glycolipids/chemistry , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Fatty Acids/chemistry , DNA, Bacterial/genetics , China , Phospholipids/analysis , Sequence Analysis, DNA
4.
J Hazard Mater ; 473: 134696, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788586

ABSTRACT

As medicine and food homology substance, goji berry is consumed worldwide in the form of fresh, dried and juice; however, pesticide residues have become one of the problems that essentially threaten its quality during cultivation and processing. In this study, a total of 75 dried goji berries were sampled from markets across China, and for the determination of 62 analytes, 28 pesticides were identified. Nine pesticides with high detectable rates and residual levels were selected for folia spraying, and their half-lives were found to range from 1.04 to 2.21 d. The processing factors (PFs) of juice were between 0.25 and 1.02, and this was mainly related with their octanol-water partition coefficient (logKow values). Washing could reduce pesticides residues to varying degrees with the removal rates between 17.00% and 74.05%. Sun drying with higher PF values in the range of 0.61-5.91 exhibited more obvious enrichment effect compared to oven drying. Commercial goji berry had cumulative chronic dietary risks with the hazard index (HI) values of 1.61%-4.97%. Its acute risk quotients (HQas) for consumers were 543.32%-585.92% and were mainly due to insecticides. These results provide important references for rationalizing pesticide application during goji berry cultivation and for the improvement of process to ensure food safety.

5.
Eur J Med Res ; 29(1): 296, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790024

ABSTRACT

PURPOSE: Sepsis is a global public health burden. The sequential organ failure assessment (SOFA) is the most commonly used scoring system for diagnosing sepsis and assessing severity. Due to the widespread use of endotracheal intubation and sedative medications in sepsis, the accuracy of the Glasgow Coma Score (GCS) is the lowest in SOFA. We designed this multicenter, cross-sectional study to investigate the predictive efficiency of SOFA with or without GCS on ICU mortality in patients with sepsis. METHODS: First, 3048 patients with sepsis admitted to Peking Union Medical College Hospital (PUMCH) were enrolled in this survey. The data were collected from June 8, 2013 to October 12, 2022. Second, 18,108 patients with sepsis in the eICU database were enrolled. Third, 2397 septic patients with respiratory system ≥ 3 points in SOFA in the eICU database were included. We investigated the predictive efficiency of SOFA with or without GCS on ICU mortality in patients with sepsis in various ICUs of PUMCH, and then we validated the results in the eICU database. MAIN RESULTS: In data of ICUs in PUMCH, the predictive efficiency of SOFA without GCS (AUROC [95% CI], 24 h, 0.724 [0.688, 0.760], 48 h, 0.734 [0.699, 0.769], 72 h, 0.748 [0.713, 0.783], 168 h, 0.781 [0.747, 0.815]) was higher than that of SOFA with GCS (AUROC [95% CI], 24 h, 0.708 [0.672, 0.744], 48 h, 0.721 [0.685, 0.757], 72 h, 0.735 [0.700, 0.757], 168 h, 0.770 [0.736, 0.804]) on ICU mortality in patients with sepsis, and the difference was statistically significant (P value, 24 h, 0.001, 48 h, 0.003, 72 h, 0.004, 168 h, 0.005). In septic patients with respiratory system ≥ 3 points in SOFA in the eICU database, although the difference was not statistically significant (P value, 24 h, 0.148, 48 h, 0.178, 72 h, 0.132, 168 h, 0.790), SOFA without GCS (AUROC [95% CI], 24 h, 0.601 [0.576, 0.626], 48 h, 0.625 [0.601, 0.649], 72 h, 0.639 [0.615, 0.663], 168 h, 0.653 [0.629, 0.677]) had a higher predictive efficiency on ICU mortality than SOFA with GCS (AUROC [95% CI], 24 h, 0.591 [0.566, 0.616], 48 h, 0.616 [0.592, 0.640], 72 h, 0.628 [0.604, 0.652], 168 h, 0.651 [0.627, 0.675]). CONCLUSIONS: In severe sepsis, it is realistic and feasible to discontinue the routine GCS for SOFA in patients with a respiratory system ≥ 3 points, and even better predict ICU mortality.


Subject(s)
Glasgow Coma Scale , Intensive Care Units , Organ Dysfunction Scores , Sepsis , Humans , Sepsis/mortality , Sepsis/diagnosis , Male , Female , Middle Aged , Aged , Cross-Sectional Studies , Intensive Care Units/statistics & numerical data , Hospital Mortality
6.
J Hazard Mater ; 472: 134537, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38759279

ABSTRACT

Experimental studies assessed the removal efficiency and fine-size distribution of CPM coupled with compositional analysis across air pollution control device systems (APCDs) at an ultra-low emission (ULE) power plant. The findings indicated total CPM emissions were reduced to a minimum of 0.418 mg/m3 at the Wet Electrostatic Precipitator (WESP). The Wet Flue Gas Desulfurization (WFGD) showed the highest removal efficiency (98%) across all particle sizes, notably in the ultra-micron range. Selective Catalytic Reduction (SCR) demonstrated a mere 34% overall efficiency, with a negative removal rate in the ultra-fine particle range. The WESP effectively removed CPM only in sub-micron and ultra-micron sizes, but significantly increased water-soluble ions formation in ultra-fine spatially suspended CPM (CPMspa), leading to overall negative efficiency. Thus, the removal efficiency of the ultra-fine particle range was most affected among the three particle size ranges when the flue gas went through the APCDs. Major metal elements and water-soluble ions were more readily removed by APCDs due to their surface aggregation, while the removal of trace elements like Hg and Se was limited. Reducing SO42-/NH4+ formation in SCR, and optimizing WESP spray system operations based on flue gas components are essential steps in controlling CPM concentration in ULE power plants.

7.
J Med Chem ; 67(9): 6906-6921, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38663873

ABSTRACT

DNA damage response (DDR) defects in cells play a crucial role in tumor development by promoting DNA mutations. These mutations create vulnerabilities specific to cancer cells, which can be effectively targeted through synthetic lethality-based therapies. To date, numerous small molecule DDR inhibitors have been identified, and some of them have already been approved for clinical use. However, due to the complexity of the tumor microenvironment, mutations may occur in the amino acid residues of DDR targets. These mutations can affect the efficacy of small molecule inhibitors targeting DDR pathways. Therefore, researchers have turned their attention to next-generation DNA damage repair modulators, particularly those based on PROTAC technology. From this perspective, we overviewed the recent progress on DDR-targeting PROTAC degraders for cancer therapy. In addition, we also summarized the biological functions of different DDR targets. Finally, the challenges and future directions for DDR-target PROTAC degraders are also discussed in detail.


Subject(s)
DNA Damage , DNA Repair , Humans , DNA Damage/drug effects , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Animals , Proteolysis/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
8.
Talanta ; 274: 126038, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579419

ABSTRACT

Herein, a High-Throughput Semi-automated Emulsive Liquid-Liquid Microextraction (HTSA-ELLME) method was developed to detect Succinate Dehydrogenase Inhibitor (SDHI) fungicides in food samples via UHPLC-MS/MS. The Oil-in-Water (O/W) emulsion comprising a hydrophobic extractant and water was dilutable with the aqueous sample solution. Upon injecting the primary emulsion into the sample solution, a secondary O/W emulsion was formed, allowing SDHI fungicides to be extracted. Subsequently, a NaCl-saturated solution was injected in the secondary O/W emulsion as a demulsifier to rapidly separate the extractant, eliminating the need for centrifugation. A 12-channel electronic micropipette was used to achieve a high-throughput semi-automation of the novel sample pretreatment. The linear range was 0.003-0.3 µg L-1 with R2 > 0.998. The limit of detection was 0.001 µg L-1. The HTSA-ELLME method successfully detected SDHI fungicides in water, juice, and alcoholic beverage samples, with recoveries and relative standard deviations of 82.6-106.9% and 0.8-5.8%, respectively. Unlike previously reported liquid-liquid microextraction approaches, the HTSA-ELLME method is the first to be both high-throughput and semi-automated and may aid in designing pesticide pretreatment processes in food samples.


Subject(s)
Alcoholic Beverages , Fruit and Vegetable Juices , Fungicides, Industrial , Liquid Phase Microextraction , Tandem Mass Spectrometry , Liquid Phase Microextraction/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Fungicides, Industrial/analysis , Fruit and Vegetable Juices/analysis , Alcoholic Beverages/analysis , Emulsions/chemistry , Water/chemistry , Food Contamination/analysis , Automation
9.
Nat Commun ; 15(1): 3131, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605012

ABSTRACT

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.


Subject(s)
Osteogenesis , Tissue Scaffolds , Osteogenesis/physiology , Tissue Scaffolds/chemistry , Porosity , Printing, Three-Dimensional , Zinc/pharmacology
10.
Chem Commun (Camb) ; 60(36): 4773-4776, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38602162

ABSTRACT

A small-molecule Fenton reagent, integrating ferrocene with a carbonic anhydrase inhibitor, was designed to intelligently regulate intracellular acidosis for self-augmented chemodynamic therapy. Acidosis coupled with up-regulated ROS levels demonstrated potent cytotoxicity and effective tumor suppression.


Subject(s)
Ferrous Compounds , Hydrogen Peroxide , Iron , Metallocenes , Humans , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Iron/chemistry , Metallocenes/chemistry , Metallocenes/pharmacology , Reactive Oxygen Species/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Acidosis/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Mice
11.
PLoS Genet ; 20(4): e1011246, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648211

ABSTRACT

Genome-wide association studies (GWAS) have identified many genetic loci associated with complex traits and diseases in the past 20 years. Multiple heritable covariates may be added into GWAS regression models to estimate direct effects of genetic variants on a focal trait, or to improve the power by accounting for environmental effects and other sources of trait variations. When one or more covariates are causally affected by both genetic variants and hidden confounders, adjusting for them in GWAS will produce biased estimation of SNP effects, known as collider bias. Several approaches have been developed to correct collider bias through estimating the bias by Mendelian randomization (MR). However, these methods work for only one covariate, some of which utilize MR methods with relatively strong assumptions, both of which may not hold in practice. In this paper, we extend the bias-correction approaches in two aspects: first we derive an analytical expression for the collider bias in the presence of multiple covariates, then we propose estimating the bias using a robust multivariable MR (MVMR) method based on constrained maximum likelihood (called MVMR-cML), allowing the presence of invalid instrumental variables (IVs) and correlated pleiotropy. We also established the estimation consistency and asymptotic normality of the new bias-corrected estimator. We conducted simulations to show that all methods mitigated collider bias under various scenarios. In real data analyses, we applied the methods to two GWAS examples, the first a GWAS of waist-hip ratio with adjustment for only one covariate, body-mass index (BMI), and the second a GWAS of BMI adjusting metabolomic principle components as multiple covariates, illustrating the effectiveness of bias correction.


Subject(s)
Bias , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Mendelian Randomization Analysis/methods , Humans , Models, Genetic , Body Mass Index
12.
Theranostics ; 14(6): 2345-2366, 2024.
Article in English | MEDLINE | ID: mdl-38646645

ABSTRACT

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Subject(s)
Histone Deacetylase 6 , Mice, Transgenic , Nerve Growth Factor , Ovarian Follicle , Ubiquitination , Animals , Female , Humans , Mice , Acetylation , Granulosa Cells/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Nerve Growth Factor/metabolism , Ovarian Follicle/metabolism
13.
J Med Chem ; 67(8): 6253-6267, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38587857

ABSTRACT

In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16-F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics.


Subject(s)
Antineoplastic Agents , Biological Availability , DNA-Activated Protein Kinase , Protein Kinase Inhibitors , Humans , Animals , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Administration, Oral , Immunotherapy/methods , Doxorubicin/pharmacology , Structure-Activity Relationship , Cell Proliferation/drug effects , Mice, Inbred BALB C , Drug Discovery , Mice, Inbred C57BL , Cell Line, Tumor , Drug Synergism , Female
15.
Article in English | MEDLINE | ID: mdl-38591154

ABSTRACT

Selumetinib is clinically used for pediatric patients with neurofibromatosis type 1 and symptomatic, inoperable plexiform neurofibromas. Until recently, selumetinib had to be taken twice daily, after 2 hours of fasting and followed by 1 hour of fasting, which could be inconvenient. This population analysis evaluated the effect of low- and high-fat meals on the pharmacokinetic (PK) parameters of selumetinib and its active metabolite N-desmethyl selumetinib. The dataset comprised 511 subjects from 15 clinical trials who received ≥1 dose of selumetinib and provided ≥1 measurable postdose concentration of selumetinib and N-desmethyl selumetinib. A 2-compartment model with sequential 0- and 1st-order delayed absorption and 1st-order elimination adequately described selumetinib PK characteristics. A 1-compartment model reasonably described N-desmethyl selumetinib PK characteristics over time simultaneously with selumetinib. Selumetinib geometric mean area under the concentration-time curve ratio (1-sided 90% confidence interval [CI] lower bound) was 76.9% (73.3%) with a low-fat meal and 79.3% (76.3%) with a high-fat meal versus fasting. The lower bound of the 1-sided 90% CI demonstrated a difference of <30% between fed and fasted states. Considering the flat exposure-response relationship within the dose range (20-30 mg/m2), the observed range of exposure, and the variability in the SPRINT trial, this was not considered clinically relevant.

16.
Brain Behav Immun ; 119: 394-407, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608743

ABSTRACT

Chronic infection with Toxoplasma gondii (T. gondii) emerges as a risk factor for neurodegenerative diseases in animals and humans. However, the underlying mechanisms are largely unknown. We aimed to investigate whether gut microbiota and its metabolites play a role in T. gondii-induced cognitive deficits. We found that T. gondii infection induced cognitive deficits in mice, which was characterized by synaptic ultrastructure impairment and neuroinflammation in the hippocampus. Moreover, the infection led to gut microbiota dysbiosis, barrier integrity impairment, and inflammation in the colon. Interestingly, broad-spectrum antibiotic ablation of gut microbiota attenuated the adverse effects of the parasitic infection on the cognitive function in mice; cognitive deficits and hippocampal pathological changes were transferred from the infected mice to control mice by fecal microbiota transplantation. In addition, the abundance of butyrate-producing bacteria and the production of serum butyrate were decreased in infected mice. Interestingly, dietary supplementation of butyrate ameliorated T. gondii-induced cognitive impairment in mice. Notably, compared to the healthy controls, decreased butyrate production was observed in the serum of human subjects with high levels of anti-T. gondii IgG. Overall, this study demonstrates that gut microbiota is a key regulator of T. gondii-induced cognitive impairment.

17.
J Pain Res ; 17: 1285-1298, 2024.
Article in English | MEDLINE | ID: mdl-38560406

ABSTRACT

Background: Transcutaneous Electrical Acupoint Stimulation (TEAS) therapy opens up the possibility for individuals with Cancer-induced bone pain (CIBP) to receive a home-based, patient-controlled approach to pain management. The aim of this study is designed to evaluate the efficacy of patient-controlled TEAS (PC-TEAS) for relieving CIBP in patients with non-small cell lung cancer (NSCLC). Methods/Design: This is a study protocol for a prospective, triple-blind, randomized controlled trial. We anticipate enrolling 188 participants with NSCLC bone metastases who are also using potent opioid analgesics from 4 Chinese medical centers. These participants will be randomly assigned in a 1:1 ratio to either the true PC-TEAS or the sham PC-TEAS group. All participants will receive standard adjuvant oncology therapy. The true group will undergo patient-controlled TEAS intervention as needed, while the sham group will follow the same treatment schedule but with non-conductive gel patches. Each treatment course will span 7 days, with a total of 4 courses administered. There will be 4 assessment time points: baseline, the conclusion of weeks 4, 8, and 12. The primary outcome of this investigation is the response rate of the average pain on the Brief Pain Inventory (BPI) scale at week 4 after treatment. Secondary outcomes include pain related indicators, quality of life scale, mood scales, and routine blood counts on the assessment days. Any adverse events will be promptly addressed and reported if they occur. We will manage trial data using the EDC platform, with a data monitoring committee providing regular quality oversight. Discussion: PC-TEAS interventions offer an attempt to achieve home-based acupuncture treatment and the feasibility of achieving triple blinding in acupuncture research. This study is designed to provide more rigorous trial evidence for the adjuvant treatment of cancer-related pain by acupuncture and to explore a safe and effective integrative medicine scheme for CIBP. Trial Registration: ClinicalTrials.gov NCT05730972, registered February 16, 2023.

18.
Asian J Psychiatr ; 96: 104042, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38615577

ABSTRACT

BACKGROUND: Previous studies have documented thalamic functional connectivity (FC) abnormalities in schizophrenia, typically examining the thalamus as a whole. The specific link between subregional thalamic FC and cognitive deficits in first-episode schizophrenia (FES) remains unexplored. METHODS: Using data from resting-state functional magnetic resonance imaging, we compared whole-brain FC with thalamic subregions between patients and HCs, and analyzed FC changes in drug-naïve patients separately. We then examined correlations between FC abnormalities with both cognitive impairment and clinical symptoms. RESULTS: A total of 33 FES patients (20 drug-naïve) and 32 age- and sex-matched healthy controls (HCs) were included. Compared to HCs, FES patients exhibited increased FC between specific thalamic subregions and cortical regions, particularly bilateral middle temporal lobe and cuneus gyrus, left medial superior frontal gyrus, and right inferior/superior occipital gyrus. Decreased FC was observed between certain thalamic subregions and the left inferior frontal triangle. These findings were largely consistent in drug-naïve patients. Notably, deficits in social cognition and visual learning in FES patients correlated with increased FC between certain thalamic subregions and cortical regions involving the right superior occipital gyrus and cuneus gyrus. The severity of negative symptoms was associated with increased FC between a thalamic subregion and the left middle temporal gyrus. CONCLUSION: Our findings suggest FC abnormalities between thalamic subregions and cortical areas in FES patients. Increased FC correlated with cognitive deficits and negative symptoms, highlighting the importance of thalamo-cortical connectivity in the pathophysiology of schizophrenia.

19.
Br J Pharmacol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613153

ABSTRACT

BACKGROUND AND PURPOSE: Pancreatic islets are modulated by cross-talk among different cell types and paracrine signalling plays important roles in maintaining glucose homeostasis. Urocortin 3 (UCN3) secreted by pancreatic ß cells activates the CRF2 receptor (CRF2R) and downstream pathways mediated by different G protein or arrestin subtypes in δ cells to cause somatostatin (SST) secretion, and constitutes an important feedback circuit for glucose homeostasis. EXPERIMENTAL APPROACH: Here, we used Arrb1-/-, Arrb2-/-, Gsfl/fl and Gqfl/fl knockout mice, the G11-shRNA-GFPfl/fl lentivirus, as well as functional assays and pharmacological characterization to study how the coupling of Gs, G11 and ß-arrestin1 to CRF2R contributed to UCN3-induced SST secretion in pancreatic δ cells. KEY RESULTS: Our study showed that CRF2R coupled to a panel of G protein and arrestin subtypes in response to UCN3 engagement. While RyR3 phosphorylation by PKA at the S156, S2706 and S4697 sites may underlie the Gs-mediated UCN3- CRF2R axis for SST secretion, the interaction of SYT1 with ß-arrestin1 is also essential for efficient SST secretion downstream of CRF2R. The specific expression of the transcription factor Stat6 may contribute to G11 expression in pancreatic δ cells. Furthermore, we found that different UCN3 concentrations may have distinct effects on glucose homeostasis, and these effects may depend on different CRF2R downstream effectors. CONCLUSIONS AND IMPLICATIONS: Collectively, our results provide a landscape view of signalling mediated by different G protein or arrestin subtypes downstream of paracrine UCN3- CRF2R signalling in pancreatic ß-δ-cell circuits, which may facilitate the understanding of fine-tuned glucose homeostasis networks.

20.
Adv Sci (Weinh) ; : e2310134, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634567

ABSTRACT

Intraperitoneal dissemination is the main method of epithelial ovarian cancer (EOC) metastasis, which is related to poor prognosis and a high recurrence rate. Circular RNAs (circRNAs) are a novel class of endogenous RNAs with covalently closed loop structures that are implicated in the regulation of tumor development. In this study, hsa_circ_0001546 is downregulated in EOC primary and metastatic tissues vs. control tissues and this phenotype has a favorable effect on EOC OS and DFS. hsa_circ_0001546 can directly bind with 14-3-3 proteins to act as a chaperone molecule and has a limited positive effect on 14-3-3 protein stability. This complex recruits CAMK2D to induce the Ser324 phosphorylation of Tau proteins, changing the phosphorylation status of Tau bound to 14-3-3 and ultimately forming the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex. The existence of this complex stimulates the production of Tau aggregation, which then induces the accumulation of lipid peroxides (LPOs) and causes LPO-dependent ferroptosis. In vivo, treatment with ferrostatin-1 and TRx0237 rescued the inhibitory effect of hsa_circ_0001546 on EOC cell spreading. Therefore, based on this results, ferroptosis caused by Tau aggregation occurs in EOC cells, which is not only in Alzheimer's disease- or Parkinson's disease-related cells and this kind of ferroptosis driven by the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex is LPO-dependent rather than GPX4-dependent is hypothesized.

SELECTION OF CITATIONS
SEARCH DETAIL
...