Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(2): 1103-1113, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36574338

ABSTRACT

Anthracite is globally used as a filter material for water purification. Herein, it was found that up to 15 disinfection byproducts (DBPs) were formed in the chlorination of anthracite-filtered pure water, while the levels of DBPs were below the detection limit in the chlorination of zeolite-, quartz sand-, and porcelain sandstone-filtered pure water. In new-anthracite-filtered water, the levels of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonia nitrogen (NH3-N) ranged from 266.3 to 305.4 µg/L, 37 to 61 µg/L, and 8.6 to 17.1 µg/L, respectively. In aged anthracite (collected from a filter at a DWTP after one year of operation) filtered water, the levels of the above substances ranged from 475.1 to 597.5 µg/L, 62.1 to 125.6 µg/L, and 14 to 28.9 µg/L, respectively. Anthracite would release dissolved substances into filtered water, and aged anthracite releases more substances than new anthracite. The released organics were partly (around 5%) composed by the µg/L level of toxic and carcinogenic aromatic carbons including pyridine, paraxylene, benzene, naphthalene, and phenanthrene, while over 95% of the released organics could not be identified. Organic carbon may be torn off from the carbon skeleton structure of anthracite due to hydrodynamic force in the water filtration process.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Drinking Water/analysis , Drinking Water/chemistry , Disinfection , Chlorine , Coal , Chlorides , Carbon , Halogenation , Water Pollutants, Chemical/analysis , Disinfectants/analysis
2.
J Environ Manage ; 308: 114615, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35131709

ABSTRACT

The dual-chamber photoelectrocatalytic (PEC) system possess advantages in the degradation efficiency and processing cost of organic contaminants. In this study, TiO2 nanotube arrays modified by rGO and g-C3N4 (rGO/g-C3N4/TNAs) photoelectrodes were successfully prepared. The surface micromorphology, chemical structure, crystal structure, and basic element composition of rGO/g-C3N4/TNAs photoelectrodes were studied by SEM, FTIR, XRD, Raman, and XPS. UV-vis absorption, photoluminescence (PL) spectra, and photoelectrochemical (PECH) tests were used to explore the photoelectrochemical characteristics of rGO/g-C3N4/TNAs photoelectrodes. Under simulated sunlight illumination, the dual-chamber PEC system with external bias voltage was used to investigate the degradation of oxytetracycline (OTC) on rGO/g-C3N4/TNAs photoelectrodes. The results showed that rGO and g-C3N4 were successfully loaded on TNAs, and the separation efficiency of electrons and holes at rGO/g-C3N4/TNAs photoelectrodes was improved. The light absorption range of rGO/g-C3N4/TNAs photoelectrodes extends to the visible light region and has better light absorption performance. Compared with the photocatalytic process, when 1.2 V bias voltage was applied, the degradation efficiency of OTC in anode and cathode chambers in PEC were increased by 3.28% and 44.01% within 60 min, respectively. In addition, the anode and cathode chambers have different degradation effects on OTC. Both the external bias voltage and initial pH have significant effects in cathode chamber, but have little effect in photoanode chamber. The fluorescence excitation-emission matrix spectra and liquid chromatography-tandem mass spectrometry showed that there were different intermediates in the degradation process of OTC. This study indicated that for the dual-chamber PEC system, rGO/g-C3N4/TNAs photoelectrodes exhibited excellent photocatalytic performance and have potential application prospects in water environmental remediation.


Subject(s)
Graphite , Oxytetracycline , Catalysis , Electroplating , Graphite/chemistry
3.
Sci Total Environ ; 806(Pt 2): 150385, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34610565

ABSTRACT

Variations in iodinated aromatic disinfection byproducts (DBPs) in the presence of I- and organic compounds as a function of reaction time in different molar ratios (MRs) of HOCl:NH3-N were investigated. Up to 17 kinds of iodinated aromatic DBPs were identified in the breakpoint chlorination of iodide (I-)/organic (phenol, bisphenol S (BPS) and p-nitrophenol (p-NP)) systems, and the possible pathways for the formation of iodinated aromatic DBPs were proposed. The reaction pathways include HOCl/HOI electrophilic substitution and oxidation, while the dominant iodinated DBPs were quantified. In the I-/phenol system (pH = 7.0), the sum of the concentrations of four iodinated aliphatic DBPs ranged from 0.32 to 1.04 µM (triiodomethane (TIM), dichloroiodomethane (DCIM), diiodochloromethane (DICM) and monoiodoacetic acid (MIAA)), while the concentration of 4-iodophenol ranged from 2.99 to 12.87 µM. The concentration of iodinated aromatic DBPs remained stable with an MR = 1:1. When the MR was 6:1, iodinated aromatic DBPs decreased with increasing reaction time, in which the main disinfectant in the system was active chlorine. This study proposed the formation mechanism of iodinated aromatic DBPs during the breakpoint chlorination of iodide-containing water. These results can be used to control the formation of hazardous iodinated aromatic DBPs in the disinfection of iodine containing water.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Chlorine , Disinfectants/analysis , Disinfection , Halogenation , Iodides , Nitrogen , Water , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 797: 149152, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34346366

ABSTRACT

Iodinated disinfection by-products (DBPs) have been attracting great attention due to their potential high toxicity to human health. Understanding of formation mechanisms and transformation process of iodinated aromatic DBPs during the chlorination of iodide-containing water is crucial. Phenol was therefore chosen as a representative of phenolic compounds to investigate the generation of iodinated aromatic DBPs in a chlorine/phenol/iodide system. The presence of iodide in water could enhance the removal of phenol by chlorine due to higher second order rate constants of HOI with phenol than that of HOCl with phenol. Fourteen kinds of iodinated aromatic DBPs were identified, which were generated from oxidation and electrophilic substitution of phenol by HOCl and HOI. Iodinated phenolic DBPs were sources of iodinated quinone DBPs and chlorinated/iodinated phenolic DBPs. Alkaline condition favored the formation of iodinated phenolic DBPs, while acid condition favored the production of iodinated quinone DBPs. Neutral condition might be the most suitable pH condition to control the formation of iodinated aromatic DBPs. The relative concentration of almost all iodinated aromatic DBPs first increased and then decreased with time, indicating iodinated aromatic DBPs might be further converted into halogenated aliphatic DBPs during the chlorination. This research provides a research basis for the removal of phenol in water.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Chlorine , Disinfection , Halogenation , Humans , Iodides , Phenol , Phenols , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 726: 138672, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32320864

ABSTRACT

Chemical stability assessment of biochar has been universally used to indicate its potential of long-term carbon sequestration. The comparative study on oxidation resistance of biochars from diverse series of feedstock is relatively limited, as well as the effects of endogenous minerals on biochar stability. Herein, oxidation resistance of biochars from peanut shell, bamboo, saw dust, reed stalk, furfural residues, seaweed degumming residues and Enteromorpha prolifera at 500 °C (PS500, BB500, SD500, RS500, FR500, SR500 and EP500) was examined by the treatments of H2O2, K2Cr2O7 and thermogravimetric analysis (TGA). Under H2O2 or K2Cr2O7 condition, C loss of algae-derived biochars (SR500 and EP500) was extremely greater than that of other biochars due to higher content of labile carbon components. PS500, BB500, SD500, RS500 and FR500 characterized with similar properties in carbon fraction, but they exhibited different ability to resist oxidation. The mineral fraction of biochars (e.g., content and species) varied with the feedstock, which played complex effects on the oxidation resistance. The mineral decomposition (e.g., CaCO3) in EP500 and SR500 above 500 °C influenced the analysis of biochar stability by TGA. After acid-washing, EP500 and SR500 showed weaker thermal oxidation resistance, agreed with the results of H2O2 and K2Cr2O7 oxidation. The oxidation resistance of biochars was correlated better with O/C ratio, implying that O/C ratio was more robust indicator than other indexes (e.g., H/C ratio and the ratio of D band to G band of Raman). The FTIR, Raman and XPS results further demonstrated the elimination of aliphatics and amorphous aromatics and/or the carboxylation/carbonylation of aromatic structures by H2O2 and K2Cr2O7. These findings are useful for better understanding the impacts of feedstock and inherent minerals on the oxidation resistance of biochars.


Subject(s)
Charcoal , Hydrogen Peroxide , Carbon Sequestration , Minerals
SELECTION OF CITATIONS
SEARCH DETAIL
...