Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Front Plant Sci ; 14: 1243849, 2023.
Article in English | MEDLINE | ID: mdl-37670857

ABSTRACT

Introduction: Preference and plasticity in nitrogen (N) form uptake are the main strategies with which plants absorb soil N. However, little effort has been made to explore effects of N form acquisition strategies, especially the plasticity, on invasiveness of exotic plants, although many studies have determined the effects of N levels (e.g. N deposition). Methods: To address this problem, we studied the differences in N form acquisition strategies between the invasive plant Solidago canadensis and its co-occurring native plant Artemisia lavandulaefolia, effects of soil N environments, and the relationship between N form acquisition strategy of S. canadensis and its invasiveness using a 15N-labeling technique in three habitats at four field sites. Results: Total biomass, root biomass, and the uptakes of soil dissolved inorganic N (DIN) per quadrat were higher for the invasive relative to the native species in all three habitats. The invader always preferred dominant soil N forms: NH4 + in habitats with NH4 + as the dominant DIN and NO3 - in habitats with NO3 - as the dominant DIN, while A. lavandulaefolia consistently preferred NO3 - in all habitats. Plasticity in N form uptake was higher in the invasive relative to the native species, especially in the farmland. Plant N form acquisition strategy was influenced by both DIN levels and the proportions of different N forms (NO3 -/NH4 +) as judged by their negative effects on the proportional contributions of NH4 + to plant N (f NH4 +) and the preference for NH4 + (ß NH4 +). In addition, total biomass was positively associated with f NH4 + or ß NH4 + for S. canadensis, while negatively for A. lavandulaefolia. Interestingly, the species may prefer to absorb NH4 + when soil DIN and/or NO3 -/NH4 + ratio were low, and root to shoot ratio may be affected by plant nutrient status per se, rather than by soil nutrient availability. Discussion: Our results indicate that the superior N form acquisition strategy of the invader contributes to its higher N uptake, and therefore to its invasiveness in different habitats, improving our understanding of invasiveness of exotic plants in diverse habitats in terms of utilization of different N forms.

2.
Fungal Biol ; 122(9): 867-874, 2018 09.
Article in English | MEDLINE | ID: mdl-30115320

ABSTRACT

The fungal community composition, size and several physico-chemical properties were individually investigated in ten macrophyte rhizospheric substrates using nested PCR-denaturing gradient gel electrophoresis and soil chemical methods. Results indicated that both Dothideomycetes and Sordariomycetes were dominant fungi in macrophyte rhizospheric substrates, and denitrifying fungi (Fusarium graminearum) was found in nine of ten macrophyte rhizospheres. Fungal Shannon-Wiener diversity index (H) and richness (S) in Thalia dealbata, Typha latifolia, Iris hexagona and Hemerocallis aurantiaca rhizospheres were higher than those in other six rhizospheres. Fungal number and biomass were 1.91 × 103 CFUs g-1 dw and 1.53 µg ergosterol g-1 dw in Iris pseudacor rhizosphere, and were greater than in other nine rhizospheres. The correlation analysis showed that fungal number and biomass significantly and positively correlated to total soil phosphorus, while fungal H and S were significantly and negatively correlated to total organic carbon. The principal components analysis (PCA) showed that the fungal community significantly divided ten macrophyte rhizospheres into four groups, showing the significant difference of fungal communities among ten rhizospheric substrates. The current study revealed for the first time the importance of rhizospheric fungal community in distinguishing macrophyte rhizospheres, thus will undoubtedly widen our insight into fungal communities in aquatic rhizospheres.


Subject(s)
Fungi/genetics , Fungi/physiology , Mycobiome/genetics , Mycobiome/physiology , Plant Roots/microbiology , Biomass , DNA, Fungal , Fungi/classification , Phylogeny , Polymerase Chain Reaction/methods , Rhizosphere , Soil Microbiology
3.
Ying Yong Sheng Tai Xue Bao ; 27(4): 1145-1151, 2016 Apr 22.
Article in Chinese | MEDLINE | ID: mdl-29732770

ABSTRACT

To investigate the effects of Spartina alterniflora invasion on methane emission from coastal salt marsh, three S. alterniflora invasive levels were established nearby Taizhou City of Zhejiang Province, including native community, mixed community with S. alterniflora and native weeds, and mono-community of S. alterniflora. The results showed that the CH4 flux in the three communities ranged from 0.68 to 5.88 mg·m-2·h-1, and CH4 flux increased significantly with S. alterniflora invasion. CH4 flux in the mono-community of S. alterniflora being 8.7 and 2.3 times as that in the native and mixed communities, respectively. S. alterniflora invasion increased significantly methanogens number, methane production potential, methanotrophs number, methane oxidation potential, plant biomass, soil organic carbon content and soil pH, but decreased significantly soil total nitrogen content. The correlation analysis showed that the CH4 flux was positively related to methanogens number, methane production potential, methanotrophs number, methane oxidation potential, plant biomass and soil pH, but negatively related to soil total nitrogen content. Overall, our results suggested that S. alterniflora invasion improved plant biomass production and soil pH, resulting in the increases in methanogens number and methane production potential to further drive soil CH4 emission.


Subject(s)
Introduced Species , Methane/analysis , Poaceae/growth & development , Wetlands , Biomass , China , Nitrogen/chemistry , Plants , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...