Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 36(6): 1269-1286.e9, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838640

ABSTRACT

Patients with metabolic dysfunction-associated steatotic liver disease (MASLD), especially advanced metabolic dysfunction-associated steatohepatitis (MASH), have an increased risk of cardiovascular diseases (CVDs). Whether CVD events will, in turn, influence the pathogenesis of MASLD remains unknown. Here, we show that myocardial infarction (MI) accelerates hepatic pathological progression of MASLD. Patients with MASLD who experience CVD events after their diagnosis exhibit accelerated liver fibrosis progression. MI promotes hepatic fibrosis in mice with MASH, accompanied by elevated circulating Ly6Chi monocytes and their recruitment to damaged liver tissues. These adverse effects are significantly abrogated when deleting these cells. Meanwhile, MI substantially increases circulating and cardiac periostin levels, which act on hepatocytes and stellate cells to promote hepatic lipid accumulation and fibrosis, finally exacerbating hepatic pathological progression of MASH. These preclinical and clinical results demonstrate that MI alters systemic homeostasis and upregulates pro-fibrotic factor production, triggering cross-disease communication that accelerates hepatic pathological progression of MASLD.


Subject(s)
Disease Progression , Mice, Inbred C57BL , Myocardial Infarction , Animals , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Humans , Mice , Male , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Monocytes/metabolism , Female , Middle Aged , Inflammation/pathology , Inflammation/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , Cell Adhesion Molecules/metabolism
3.
Front Cardiovasc Med ; 10: 1168047, 2023.
Article in English | MEDLINE | ID: mdl-37424900

ABSTRACT

Objectives: Obesity, especially abdominal obesity, increases the prevalence of metabolic and cardiovascular disease (CVD). Fibroblast growth factor 21 (FGF21) has been identified as a critical regulator playing a therapeutic role in diabetes and its complications. This study aims to evaluate the relationship between serum FGF21 levels and body shape parameters in patients with hypertension (HP) and type 2 diabetes mellitus (T2DM). Methods: Serum FGF21 levels were determined in 1,003 subjects, including 745 patients with T2DM, and 258 individuals were selected as a healthy control in this cross-sectional study. Results: Serum FGF21 levels were significantly higher in T2DM patients with HP than those without [534.9 (322.6-722.2) vs. 220.65 (142.8-347.55) pg/ml, p < 0.001], and levels in both of these two groups were significantly increased compared with that of healthy control [123.92 (67.23-219.32) pg/ml, all p < 0.001]. These differences were also observed in body shape parameters, including weight, waistline, body mass index (BMI), body shape index (ABSI), and the percentage of abdominal obesity. Serum FGF21 levels in T2DM patients were positively correlated with body shape parameters, including weight, waistline, neck circumference, BMI, ABSI, percent of abdominal obesity, and triglyceride, while negatively with estimated glomerular filtration rate (all p < 0.01). The significance remained stable when adjusted for age and T2DM duration. In addition, both serum FGF21 concentrations and waistline were independently associated with HP in T2DM patients after the adjustment for risk factors (all p < 0.05). ROC analysis for FGF21 levels of 745 patients with T2DM identified 411.33 pg/ml as an optimal cut-off point to predict HP, with a sensitivity and specificity of 66.0% and 84.9%, respectively. Conclusions: FGF21 resistance occurs in patients of HP in T2DM, and positively correlates with body shape parameters (especially waistline and BMI). High levels of FGF21 may be a compensatory reaction to offset HP.

4.
Cell Rep ; 42(6): 112667, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37330909

ABSTRACT

Dynamic regulation of integrin activation and inactivation is critical for precisely controlled cell adhesion and migration in physiological and pathological processes. The molecular basis for integrin activation has been intensively studied; however, the understanding of integrin inactivation is still limited. Here, we identify LRP12 as an endogenous transmembrane inhibitor for α4 integrin activation. The LRP12 cytoplasmic domain directly binds to the integrin α4 cytoplasmic tail and inhibits talin binding to the ß subunit, thus keeping integrin inactive. In migrating cells, LRP12-α4 interaction induces nascent adhesion (NA) turnover at the leading-edge protrusion. Knockdown of LRP12 leads to increased NAs and enhanced cell migration. Consistently, LRP12-deficient T cells show an enhanced homing capability in mice and lead to aggravated chronic colitis in a T cell-transfer colitis model. Altogether, LRP12 is a transmembrane inactivator for integrins that inhibits α4 integrin activation and controls cell migration by maintaining balanced NA dynamics.


Subject(s)
Integrin alpha4 , Integrins , LDL-Receptor Related Proteins , Animals , Cricetinae , Mice , Cell Adhesion/physiology , Cell Movement/physiology , CHO Cells , Integrin alpha4/metabolism , Integrins/metabolism , Protein Binding , Humans , LDL-Receptor Related Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...