Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 206: 108232, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091932

ABSTRACT

Carotenoids and their derivates play critical physiologic roles in plants. However, these substrates and their metabolism have not been elucidated in fruit of blueberry (Vaccinium corymbosum). In this study, carotenoids and ABA were investigated by LC-MS and their biosynthesis were subject to proteomic analysis during fruit ripening. Activity of CCD1 and NCED1/3 were studied in vivo or in vitro. Also, effects of ethephon and 1-MCP on biosynthesis of carotenoid and ABA were investigated through the expression of corresponding genes using qPCR. As a result, carotenoid biosynthesis was prominently mitigated whereas its metabolism was enhanced during fruit ripening, which resulted in a decrease in the carotenoids. VcCCD1 could both cleave ß-carotene, zeaxanthin and lutein at positions of 9, 10 (9', 10'), which was mainly responsible for the degradation of these carotenoids. Interestingly, in the situation of mitigation of carotenoid biosynthesis, ABA still rapidly accumulated, which was mainly attributed to the upregulated expression of VcNCED1/3. Notably, VcNCED1/3 also showed a cleavage activity of all-trans-zeaxanthin and a stereospecific cleavage activity of 9-cis-carotene to generate C15-carotenal. The C15-carotenal could be potentially converted to ABA through ZEP-independent ABA biosynthetic pathway during blueberry fruit ripening. Similar to a nature natural maturation, ethylene accelerated the carotenoid degradation and ABA biosynthesis trough downregulating the expression of genes in carotenoid biosynthesis and upregulating the expression of genes in ABA biosynthesis. These information help understand the regulation of carotenoids and ABA, and effects of ethylene on the regulation during blueberry fruit ripening.


Subject(s)
Blueberry Plants , Blueberry Plants/genetics , Blueberry Plants/metabolism , Fruit/metabolism , Proteomics , Zeaxanthins/metabolism , Carotenoids/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Int J Biol Macromol ; 247: 125693, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37419268

ABSTRACT

The phytochrome-interacting factors (PIFs) function crucially in multiple physiological processes, but the biological functions of some PIFs remain elusive in some species. Here, a PIF transcription factor NtPIF1 was cloned and characterized in tobacco (Nicotiana tabacum L.). The transcript of NtPIF1 was significantly induced by drought stress treatments, and it localized in the nuclear. Knockout of NtPIF1 by CRISPR/Cas9 system led to the improved drought tolerance of tobacco with increased osmotic adjustment, antioxidant activity, photosynthetic efficiency and decreased water loss rate. On the contrary, NtPIF1-overexpression plants displays drought-sensitive phenotypes. In addition, NtPIF1 reduced the biosynthesis of abscisic acid (ABA) and its upstream carotenoids by regulating the expression of genes involved in ABA and carotenoids biosynthetic pathway upon drought stress. Electrophoretic mobility shift and dual-luciferase assays illustrated that, NtPIF1 directly bind to the E-box elements within the promoters of NtNCED3, NtABI5, NtZDS and Ntß-LCY to repress their transcription. Overall, these data suggested that NtPIF1 negatively regulate tobacco adaptive response to drought stress and carotenoids biosynthesis; moreover, NtPIF1 has the potential to develop drought-tolerant tobacco plants using CRISPR/Cas9 system.


Subject(s)
Phytochrome , Phytochrome/genetics , Phytochrome/metabolism , Nicotiana/metabolism , Drought Resistance , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Abscisic Acid/metabolism , Carotenoids , Droughts , Gene Expression Regulation, Plant , Stress, Physiological/genetics
3.
Fish Shellfish Immunol ; 138: 108827, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37207887

ABSTRACT

Nocardia seriolae is the main pathogen of fish nocardiosis. In our previous study, alanine dehydrogenase was identified as a potential virulence factor of N. seriolae. On the basis of this fact, the alanine dehydrogenase gene of N. seriolae (NsAld) was knocked out to establish the strain ΔNsAld for vaccine development against fish nocardiosis in this study. The LD50 of strain ΔNsAld was 3.90 × 105 CFU/fish, higher than that of wild strain (5.28 × 104 CFU/fish) significantly (p < 0.05). When the strain ΔNsAld was used as a live vaccine to immunize hybrid snakehead (Channa maculata ♀ × Channa argus ♂) at 2.47 × 105 CFU/fish by intraperitoneal injection, the non-specific immune indexes (LZM, CAT, AKP, ACP and SOD activities), specific antibody (IgM) titers and several immune-related genes (CD4, CD8α, IL-1ß, MHCIα, MHCIIα and TNFα) were up-regulated in different tissues, indicating that this vaccine could induce humoral and cell-mediated immune responses. Furthermore, the relative percentage survival (RPS) of ΔNsAld vaccine was calculated as 76.48% after wild N. seriolae challenge. All these results suggest that the strain ΔNsAld could be a potential candidate for live vaccine development to control fish nocardiosis in aquaculture.


Subject(s)
Fish Diseases , Nocardia Infections , Animals , Alanine Dehydrogenase/genetics , Gene Deletion , Nocardia Infections/prevention & control , Nocardia Infections/veterinary , Nocardia Infections/genetics , Fishes/genetics , Vaccine Development
4.
PeerJ ; 11: e14866, 2023.
Article in English | MEDLINE | ID: mdl-36908821

ABSTRACT

Straighthead is a physiological disorder of rice (Oryza sativa L.) that causes dramatic yield loss in susceptible cultivars. This disorder is found worldwide and is reported to increasingly occur in the southern United States. Genetic resistance breeding has been considered as one of the most efficient methods for straighthead prevention because the traditional prevention method wastes water and costs labor. In this study, we analyzed the genetic effects of five straighthead quantitative trait loci (QTLs), namely, AP3858-1 (qSH-8), RM225 (qSH-6), RM2 (qSH-7), RM206 (qSH-11), and RM282 (qSH-3), on the recombinant inbred lines (RILs) developed from Jing185/Cocodrie and Zhe733/R312 populations using our five previously identified markers linked to these QTLs. As a result, recombinant inbred lines (RILs) with four resistant alleles at the four loci (AP3858-1, RM225, RM2, and RM206) exhibited the highest straighthead resistance. This result suggests that the four markers could be efficiently used to select the straighthead-resistant recombinant inbred lines (RILs). Furthermore, by using AP3858-1, we successfully obtained five straighthead-resistant recombinant inbred lines (RILs) with more than 50% genetic similarity to Cocodrie. These markers and recombinant inbred lines (RILs) can be used for future straighthead resistance breeding through marker-assisted selection.


Subject(s)
Oryza , Quantitative Trait Loci , Chromosome Mapping , Oryza/genetics , Plant Breeding , Alleles
5.
Mol Plant Pathol ; 23(12): 1737-1750, 2022 12.
Article in English | MEDLINE | ID: mdl-36094814

ABSTRACT

Tobacco black shank caused by Phytophthora nicotianae is a serious disease in tobacco cultivation. We found that naringenin is a key factor that causes different sensitivity to P. nicotianae between resistant and susceptible tobacco. The level of basal flavonoids in resistant tobacco was distinct from that in susceptible tobacco. Of all flavonoids with different content, naringenin showed the best antimicrobial activity against mycelial growth and sporangia production of P. nicotianae in vitro. However, naringenin showed very low or no antimicrobial activity to other plant pathogens. We found that naringenin induced not only the accumulation of reactive oxygen species, but also the expression of salicylic acid biosynthesis-related genes. Naringenin induced the expression of the basal pathogen resistance gene PR1 and the SAR8.2 gene that contributes to plant resistance to P. nicotianae. We then interfered with the expression of the chalcone synthase (NtCHS) gene, the key gene of the naringenin synthesis pathway, to inhibit naringenin biosynthesis. NtCHS-RNAi rendered tobacco highly sensitive to P. nicotianae, but there was no change in susceptibility to another plant pathogen, Ralstonia solanacearum. Finally, exogenous application of naringenin on susceptible tobacco enhanced resistance to P. nicotianae and naringenin was very stable in this environment. Our findings revealed that naringenin plays a core role in the defence against P. nicotianae and expanded the possibilities for the application of plant secondary metabolites in the control of P. nicotianae.


Subject(s)
Phytophthora , Phytophthora/genetics , Nicotiana/genetics , Plant Diseases/genetics , Flavonoids
6.
Front Plant Sci ; 13: 878267, 2022.
Article in English | MEDLINE | ID: mdl-35734263

ABSTRACT

Agronomic traits such as plant height (PH), leaf number (LN), leaf length (LL), and leaf width (LW), which are closely related to yield and quality, are important in tobacco (Nicotiana tabacum L.). To identify quantitative trait loci (QTLs) associated with agronomic traits in tobacco, 209 recombinant inbred lines (RILs) and 537 multiparent advanced generation intercross (MAGIC) lines were developed. The biparental RIL and MAGIC lines were genotyped using a 430 K single-nucleotide polymorphism (SNP) chip assay, and their agronomic traits were repeatedly evaluated under different conditions. A total of 43 QTLs associated with agronomic traits were identified through a combination of linkage mapping (LM) and association mapping (AM) methods. Among these 43 QTLs, three major QTLs, namely qPH13-3, qPH17-1, and qLW20-1, were repeatedly identified by the use of various genetically diverse populations across different environments. The candidate genes for these major QTLs were subsequently predicted. Validation and utilization of the major QTL qLW20-1 for the improvement of LW in tobacco were investigated. These results could be applied to molecular marker-assisted selection (MAS) for breeding important agronomic traits in tobacco.

7.
Mol Biol Rep ; 46(5): 5175-5184, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31313133

ABSTRACT

Isoprenoids, the largest and most diverse class of secondary metabolites in plants, play an important role in plant growth and development. Isoprenoids can be synthesized by two distinct pathways: the methylerythritol-4-phosphate (MEP) pathway and the mevalonate (MVA) pathway. 1-Deoxy-D-xylulose-5-phosphate synthase (DXS) is the first step and a key regulatory enzyme of the MEP pathway in plants. The DXS gene has been reported to play a key role in seedling development, flowering, and fruit quality in plants of the Solanaceae, such as tomato, potato and tobacco. However, to improve our understanding and utilization of DXS genes, a thorough bioinformatics study is needed. In this study, 48 DXS genes were aligned and analyzed by computational tools to predict their protein properties, including molecular mass, theoretical isoelectric point (pI), signal peptides, transmembrane and conserved domains, and expression patterns. Sequence comparison analysis revealed strong conservation among the 48 DXS genes. Phylogenetic analysis indicated that all DXS genes were derived from one ancestor and could be classified into three groups with different expression patterns. Moreover, the functional divergence of DXS was restricted after gene duplication. The results suggested that the function and evolution of the DXS gene family were highly conserved and that the DXS genes of Group I may play a more important role than those of other groups.


Subject(s)
Computational Biology/methods , Solanaceae/enzymology , Transferases/genetics , Transferases/metabolism , Evolution, Molecular , Metabolic Networks and Pathways , Multigene Family , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Secondary Metabolism , Solanaceae/genetics , Solanaceae/growth & development , Terpenes/metabolism , Transferases/chemistry
8.
Food Chem ; 290: 216-228, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31000040

ABSTRACT

Blueberry is one of the richest phenolic sources, providing health benefits. To study blueberry phenolic biosynthesis, we investigated phenolics and proteomics at three typical fruit maturation phases. Multiple isoforms of enzymes and multiple members of transcription factors involved in phenolic biosynthesis were divergent and differently regulated. Regulation of some proteins resulted in change of phenolic content. During fruit maturation, down-regulation of VcOMT (CUFF.177.1) and VcLAR2 (CUFF.16780.1) was associated with decreases of ferulic acid and catechin, respectively; Up-regulation of VcFLS (CUFF.41155.1), and VcF3'5'H (CUFF.51711.1) and VcF3'5'H (gene.g10884.t1.1) likely drove increases of their products (quercetin and myricetin); Up-regulation of VcUFGALT (CUFF.20951.1) and VcUFGT73 (4333_g.1) and down-regulation of VcU5GT (CUFF.51258.1) were correlated to accumulation of anthocyanins with 3-glucoside/galactoside. Additionally, four TFs, VcAPRR2 (CUFF.24826.1), VcbHLH3 (CUFF.37765.1), VcWD (CUFF.28282.2) and VcWD (CUFF.28273.1) were probably related to regulation of anthocyanin biosynthesis. These proteins were potential targets for genetic improvement in a breeding program.


Subject(s)
Blueberry Plants/metabolism , Phenols/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Anthocyanins/analysis , Anthocyanins/metabolism , Blueberry Plants/chemistry , Blueberry Plants/genetics , Chromatography, High Pressure Liquid , Fruit/chemistry , Fruit/genetics , Fruit/metabolism , Gene Ontology , Peptides/analysis , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Alignment , Tandem Mass Spectrometry , Up-Regulation
9.
Front Plant Sci ; 10: 178, 2019.
Article in English | MEDLINE | ID: mdl-30846995

ABSTRACT

High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 and O 2 - contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 and O 2 - ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 and O 2 - contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.

10.
Biomed Res Int ; 2017: 7641362, 2017.
Article in English | MEDLINE | ID: mdl-28812021

ABSTRACT

A rice physiological disorder makes mature panicle keep erect with empty grains termed as "straighthead." Straighthead causes yield losses and is a serious threat to rice production worldwide. Here, a new study of association mapping was conducted to identify QTL involved in straighthead. A subset of 380 accessions was selected from the USDA rice core collection and genotyped with 72 genome-wide SSR markers. An optimal model implemented with principle components (PCs) was used in this association mapping. As a result, five markers were identified to be significantly associated with straighthead. Three of them, RM263, RM169, and RM224, were consistent with a previous study. Three markers, RM475, RM263, and RM19, had a resistant allele associated with a decrease in straighthead rating (straighthead rating ≤ 4.8). In contrast, the two other marker loci RM169 and RM224 had a few susceptible alleles associated with an increase in straighthead rating (straighthead rating ≥ 8.7). Interestingly, RM475 is close to QTL "qSH-2" and "AsS" with straighthead resistance, which was reported in two studies on linkage mapping of straighthead. This finding adds to previous work and is useful for further genetic study of straighthead.


Subject(s)
Oryza/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Arsenic/toxicity , Chromosome Mapping , Chromosomes, Plant/drug effects , Edible Grain/drug effects , Edible Grain/genetics , Edible Grain/growth & development , Genetic Linkage , Genome, Plant/drug effects , Genotype , Oryza/drug effects , Oryza/growth & development , Plant Diseases/chemically induced
11.
PLoS One ; 7(12): e52540, 2012.
Article in English | MEDLINE | ID: mdl-23285082

ABSTRACT

Straighthead, a physiological disorder characterized by sterile florets and distorted spikelets, causes significant yield losses in rice, and occurs in many countries. The current control method of draining paddies early in the season stresses plants, is costly, and wastes water. Development of resistant cultivar is regarded as the most efficient way for its control. We mapped a QTL for straighthead resistance using two recombinant inbred line (RIL) F(9) populations that were phenotyped over two years using monosodium methanearsonate (MSMA) to induce the symptoms. One population of 170 RILs was genotyped with 136 SSRs and the other population of 91 RILs was genotyped with 159 SSRs. A major QTL qSH-8 was identified in an overlapping region in both populations, and explained 46% of total variation in one and 67% in another population for straighthead resistance. qSH-8 was fine mapped from 1.0 Mbp to 340 kb using 7 SSR markers and further mapped to 290 kb in a population between RM22573 and InDel 27 using 4 InDel markers. SSR AP3858-1 and InDel 11 were within the fine mapped region, and co-segregated with straighthead resistance in both RIL populations, as well as in a collection of diverse global accessions. These results demonstrate that AP3858-1 and InDel 11 can be used for marker-assisted selection (MAS) for straighthead resistant cultivars, which is especially important because there is no effective way to directly evaluate straighthead resistance.


Subject(s)
Disease Resistance/genetics , Genetic Linkage , Oryza/genetics , Oryza/immunology , Physical Chromosome Mapping , Plant Diseases/genetics , Plant Diseases/immunology , Chromosomes, Plant/genetics , Crosses, Genetic , Genetic Markers , Genotype , INDEL Mutation/genetics , Inbreeding , Microsatellite Repeats/genetics , Phenotype , Polymorphism, Genetic , Quantitative Trait Loci/genetics , Recombination, Genetic/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...