Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 274(Pt 1): 133071, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871096

ABSTRACT

Plants employ metal tolerance proteins (MTPs) to confer tolerance by sequestering excess ions into vacuoles. MTPs belong to the cation diffusion facilitator (CDF) family, which facilitates the transport of divalent transition metal cations. In this study, we conducted a comprehensive analysis of the MTP gene families across 21 plant species, including maize (Zea mays). A total of 247 MTP genes were identified within these plant genomes and categorized into distinct subgroups, namely Zn-CDF, Mn-CDF, and Fe/Zn-CDF, based on phylogenetic analyses. This investigation encompassed the characterization of genomic distribution, gene structures, cis-regulatory elements, collinearity relationships, and gene ontology functions associated with MTPs. Transcriptomic analyses unveiled stress-specific expression patterns of MTP genes under various abiotic stresses. Moreover, quantitative RT-PCR assays were employed to assess maize MTP gene responses to diverse heavy metal stress conditions. Functional validation of metal tolerance roles was achieved through heterologous expression in yeast. This integrated evolutionary scrutiny of MTP families in cereals furnishes a valuable framework for the elucidation of MTP functions in subsequent studies. Notably, the prioritized MTP gene ZmMTP6 emerged as a positive regulator of plant Cd tolerance, thereby offering a pivotal genetic asset for the development of Cd-tolerant crops, particularly maize cultivars.

SELECTION OF CITATIONS
SEARCH DETAIL
...