Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.545
Filter
1.
Int J Surg ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833348

ABSTRACT

BACKGROUND: Insufficient evidence exists to ascertain the long-term prognosis in patients with obesity undergoing laparoscopic surgery versus open surgery for colorectal cancer. METHODS: Employing an institutional database from 2009 to 2019, we assessed individuals with a body mass index of ≥30 kg/m2 who underwent surgery for primary stage I-III colorectal adenocarcinoma. We used propensity score-weighted analysis to compare short-term and oncologic outcomes between laparoscopic and open surgical approaches. RESULTS: This study enrolled 473 patients (open vs. laparoscopic surgery: 220 vs. 253; median follow-up period, 60 mo). The laparoscopy group showed a significantly longer operative time (252 vs. 212 min), a higher anastomotic-leakage rate (5.14% vs. 0.91%), and a greater proportion of Clavien-Dindo class > III complications (5.93% vs. 1.82%). The open group showed a higher wound infection rate (7.27% vs. 3.16%) and a higher readmission rate (6.36% vs. 2.37%). After propensity-score weighting, laparoscopy was inferior to open surgery in terms of long-term overall survival (hazard ratio: 1.43), disease-free survival (1.39), and recurrence rate (21.1% vs. 14.5%). In the subgroup analysis, female patients, older individuals, stage III patients, patients with rectal cancer, and those who underwent surgery after 2014 showed inferior long-term outcomes after laparoscopy. CONCLUSIONS: Laparoscopic colorectal cancer surgery for patients with obesity requires significant caution. Despite good short-term outcomes, this procedure is associated with hidden risks and poor long-term prognoses. In female patients, older individuals, stage III patients, patients with rectal cancer, and those treated in the late surgery era subgroups, caution is advised when performing laparoscopic surgery.

2.
Adv Sci (Weinh) ; : e2309389, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689505

ABSTRACT

Ir(III) carbene complexes have been explored as one of the best blue phosphors for their high performance. Herein, the authors designed and synthesized a series of blue-emitting Ir(III) phosphors (f-ct9a-c), featuring fac-coordinated cyano-imidazo[4,5-b]pyridin-2-ylidene cyclometalates. These Ir(III) complexes exhibit true-blue emission with a peak maximum spanning 448-467 nm, with high photoluminescence quantum yields of 81-88% recorded in degassed toluene. Moreover, OLED devices bearing phosphors f-ct9a and f-ct9b deliver maximum external quantum efficiencies (EQEmax) of 25.9% and 30.3%, together with Commission Internationale de L'Eclairage (CIEx,y) coordinates of (0.157, 0.225) and (0.142, 0.169), respectively. Remarkably, the f-ct9b-based device displays an incredible EQE of 29.0% at 5000 cd·m-2. The hyper-OLED device based on f-ct9b and ν-DABNA exhibits an EQEmax of 34.7% and CIEx,y coordinates of (0.122, 0.131), affirming high potentials in achieving efficient blue electroluminescence.

3.
BMC Microbiol ; 24(1): 156, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724913

ABSTRACT

BACKGROUND: To establish a method to induce Campylobacter jejuni colonization in the intestines of C57BL/6 mice through antibiotic-induced microbiome depletion. RESULTS: Fifty-four female C57BL/6 mice were divided into the normal, control, and experimental groups. The experimental group was administered intragastric cefoperazone sodium and sulbactam sodium (50 mg/mL) for 2 days; then, the experimental and control mice were intragastrically administered 200 µL C. jejuni, which was repeated once more after 2 days. Animal feces were collected, and the HipO gene of C. jejuni was detected using TaqMan qPCR from day 1 to day 14 after modeling completion. Immunofluorescence was used to detect intestinal C. jejuni colonization on day 14, and pathological changes were observed using hematoxylin and eosin staining. Additionally, 16S rDNA analyses of the intestinal contents were conducted on day 14. In the experimental group, C. jejuni was detected in the feces from days 1 to 14 on TaqMan qPCR, and immunofluorescence-labeled C. jejuni were visibly discernable in the intestinal lumen. The intestinal mucosa was generally intact and showed no significant inflammatory-cell infiltration. Diversity analysis of the colonic microbiota showed significant inter-group differences. In the experimental group, the composition of the colonic microbiota differed from that in the other 2 groups at the phylum level, and was characterized by a higher proportion of Bacteroidetes and a lower proportion of Firmicutes. CONCLUSIONS: Microbiome depletion induced by cefoperazone sodium and sulbactam sodium could promote long-term colonization of C. jejuni in the intestines of mice.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Cefoperazone , Feces , Gastrointestinal Microbiome , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Sulbactam , Animals , Campylobacter jejuni/drug effects , Campylobacter jejuni/growth & development , Female , Anti-Bacterial Agents/pharmacology , Cefoperazone/pharmacology , Feces/microbiology , Campylobacter Infections/microbiology , Mice , Gastrointestinal Microbiome/drug effects , Sulbactam/pharmacology , RNA, Ribosomal, 16S/genetics , Intestines/microbiology , Colon/microbiology , Colon/pathology , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/drug effects , DNA, Bacterial/genetics , DNA, Ribosomal/genetics
4.
Cells ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727307

ABSTRACT

Tumor necrosis factor-α-induced protein 8-like 3 (TNFAIP8L3 or TIPE3) functions as a transfer protein for lipid second messengers. TIPE3 is highly upregulated in several human cancers and has been established to significantly promote tumor cell proliferation, migration, and invasion and inhibit the apoptosis of cancer cells. Thus, inhibiting the function of TIPE3 is expected to be an effective strategy against cancer. The advancement of artificial intelligence (AI)-driven drug development has recently invigorated research in anti-cancer drug development. In this work, we incorporated DFCNN, Autodock Vina docking, DeepBindBC, MD, and metadynamics to efficiently identify inhibitors of TIPE3 from a ZINC compound dataset. Six potential candidates were selected for further experimental study to validate their anti-tumor activity. Among these, three small-molecule compounds (K784-8160, E745-0011, and 7238-1516) showed significant anti-tumor activity in vitro, leading to reduced tumor cell viability, proliferation, and migration and enhanced apoptotic tumor cell death. Notably, E745-0011 and 7238-1516 exhibited selective cytotoxicity toward tumor cells with high TIPE3 expression while having little or no effect on normal human cells or tumor cells with low TIPE3 expression. A molecular docking analysis further supported their interactions with TIPE3, highlighting hydrophobic interactions and their shared interaction residues and offering insights for designing more effective inhibitors. Taken together, this work demonstrates the feasibility of incorporating deep learning and MD simulations in virtual drug screening and provides inhibitors with significant potential for anti-cancer drug development against TIPE3-.


Subject(s)
Cell Proliferation , Deep Learning , Intracellular Signaling Peptides and Proteins , Molecular Docking Simulation , Humans , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
5.
Heliyon ; 10(9): e30169, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699022

ABSTRACT

Nauclea officinalis, as a Chinese medicine in Hainan province, had the effect of treating lower limb ulcers, burn infections. In this paper, we studied the effect of Strictosamide (STR), the main bioactive compound in Nauclea officinals, on wound healing and explored its internal mechanism. Firstly, the wound healing potential of STR was evaluated in a rat model, demonstrating its ability to expedite wound healing, mitigate inflammatory infiltration, and enhance collagen deposition. Additionally, immunofluorescence analysis revealed that STR up-regulated the expression of CD31 and PCNA. Subsequently, target prediction, protein-protein interaction (PPI), gene ontology (GO), and pathway enrichment analyses were used to obtain potential targets, specific biological processes, and molecular mechanisms of STR for the potential treatment of wound healing. Furthermore, molecular docking was conducted to predict the binding affinity between STR and its associated targets. Additionally, in vivo and in vitro experiments confirmed that STR could increase the expression of P-PI3K, P-AKT and P-mTOR by activating the PI3K/AKT signaling pathway. In summary, this study provided a new explanation for the mechanism by which STR promotes wound healing through network pharmacology, suggesting that STR may be a new candidate for treating wound.

6.
Nat Commun ; 15(1): 3746, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702319

ABSTRACT

The neural basis of fear of heights remains largely unknown. In this study, we investigated the fear response to heights in male mice and observed characteristic aversive behaviors resembling human height vertigo. We identified visual input as a critical factor in mouse reactions to heights, while peripheral vestibular input was found to be nonessential for fear of heights. Unexpectedly, we found that fear of heights in naïve mice does not rely on image-forming visual processing by the primary visual cortex. Instead, a subset of neurons in the ventral lateral geniculate nucleus (vLGN), which connects to the lateral/ventrolateral periaqueductal gray (l/vlPAG), drives the expression of fear associated with heights. Additionally, we observed that a subcortical visual pathway linking the superior colliculus to the lateral posterior thalamic nucleus inhibits the defensive response to height threats. These findings highlight a rapid fear response to height threats through a subcortical visual and defensive pathway from the vLGN to the l/vlPAG.


Subject(s)
Fear , Geniculate Bodies , Mice, Inbred C57BL , Superior Colliculi , Visual Pathways , Animals , Male , Fear/physiology , Mice , Geniculate Bodies/physiology , Superior Colliculi/physiology , Visual Pathways/physiology , Periaqueductal Gray/physiology , Neurons/physiology , Primary Visual Cortex/physiology , Visual Perception/physiology , Behavior, Animal/physiology
7.
Pathobiology ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718783

ABSTRACT

Lymph node metastasis is one of the most common ways of tumour metastasis. The presence or absence of lymph node involvement influences the cancer's stage, therapy, and prognosis. The integration of artificial intelligence systems in the histopathological diagnosis of lymph nodes after surgery is urgent. Here, we propose a pan-origin lymph node cancer metastasis detection system. The system is trained by over 700 whole slide images and is composed of two deep learning models to locate the lymph nodes and detect cancers. It achieved a area under the receiver operating characteristic (ROC) curve (AUC) of 0.958, with a 95.2% sensitivity and 72.2% specificity, on 1,402 whole-slide images (WSIs) from 49 organs at the National Cancer Center, China. Moreover, we demonstrated that the system could perform robustly with 1,051 WSIs from 52 organs from another medical center, with a AUC of 0.925. Our research represents a step forward in a pan-origin lymph node metastasis detection system, providing accurate pathological guidance by reducing the probability of missed diagnosis in routine clinical practice.

8.
RSC Med Chem ; 15(5): 1515-1526, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784467

ABSTRACT

G-quadruplex (G4) aptamers that can competitively binding protein with oncogene promoter G4 hold promise for cancer treatment. In this study, a neutral cytidinyl lipid, DNCA, was shown to transfect and deliver G4 aptamers (AS1411, TBA) into tumour cells, including multidrug-resistant tumour cells, and their nuclear localizations were clearly detected. Both AS1411/DNCA and TBA/DNCA showed excellent antitumour efficacies in the drug-resistant non-small cell lung cancer cell line A549/TXL at a low concentration (100 nM). Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was identified as a new target of AS1411 and TBA. The binding affinities were measured, and the Kd values of AS1411/hnRNP A1 and TBA/hnRNP A1 were 17.5 nM and 21.1 nM, respectively. Then the expression of KRAS mRNA in A549/TXL cells was found to be higher than that in A549 cells, and KRAS mRNA was reduced by approximately 40% after administration of AS1411 or TBA in A549/TXL cells. Further, it was confirmed for the first time that AS1411 targeted not only hnRNP A1 but also the KRAS promoter/hnRNP A1 complexes. And although TBA cannot target the KRAS promoter/hnRNP A1 complexes, the biolayer interferometry (BLI) experiment showed that TBA and AS1411 have similar effects on several key proteins in tumour cells, especially hnRNP A1. Molecular docking and molecular dynamics simulation showed that AS1411 and the KRAS promoter bound to the same domain of hnRNP A1 protein, while TBA bound to another domain.

9.
Diagnostics (Basel) ; 14(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732331

ABSTRACT

Sepsis-induced acute kidney injury (AKI) is a common complication in patients with severe illness and leads to increased risks of mortality and chronic kidney disease. We investigated the association between monocyte distribution width (MDW), red-blood-cell volume distribution width (RDW), neutrophil-to-lymphocyte ratio (NLR), sepsis-related organ-failure assessment (SOFA) score, mean arterial pressure (MAP), and other risk factors and sepsis-induced AKI in patients presenting to the emergency department (ED). This retrospective study, spanning 1 January 2020, to 30 November 2020, was conducted at a university-affiliated teaching hospital. Patients meeting the Sepsis-2 consensus criteria upon presentation to our ED were categorized into sepsis-induced AKI and non-AKI groups. Clinical parameters (i.e., initial SOFA score and MAP) and laboratory markers (i.e., MDW, RDW, and NLR) were measured upon ED admission. A logistic regression model was developed, with sepsis-induced AKI as the dependent variable and laboratory parameters as independent variables. Three multivariable logistic regression models were constructed. In Model 1, MDW, initial SOFA score, and MAP exhibited significant associations with sepsis-induced AKI (area under the curve [AUC]: 0.728, 95% confidence interval [CI]: 0.668-0.789). In Model 2, RDW, initial SOFA score, and MAP were significantly correlated with sepsis-induced AKI (AUC: 0.712, 95% CI: 0.651-0.774). In Model 3, NLR, initial SOFA score, and MAP were significantly correlated with sepsis-induced AKI (AUC: 0.719, 95% CI: 0.658-0.780). Our novel models, integrating MDW, RDW, and NLR with initial SOFA score and MAP, can assist with the identification of sepsis-induced AKI among patients with sepsis presenting to the ED.

10.
Bio Protoc ; 14(9): e4985, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38737508

ABSTRACT

Pseudouridine (Ψ), the most prevalent modified base in cellular RNAs, has been mapped to numerous sites not only in rRNAs, tRNAs, and snRNAs but also mRNAs. Although there have been multiple techniques to identify Ψs, due to the recent development of sequencing technologies some reagents are not compatible with the current sequencer. Here, we show the updated Pseudo-seq, a technique enabling the genome-wide identification of pseudouridylation sites with single-nucleotide precision. We provide a comprehensive description of Pseudo-seq, covering protocols for RNA isolation from human cells, library preparation, and detailed data analysis procedures. The methodology presented is easily adaptable to any cell or tissue type with high-quality mRNA isolation. It can be used for discovering novel pseudouridylation sites, thus constituting a crucial initial step toward understanding the regulation and function of this modification. Key features • Identification of Ψ sites on mRNAs. • Updated Pseudo-seq provides precise positional and quantitative information of Ψ. • Uses a more efficient library preparation with the latest, currently available materials.

11.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747577

ABSTRACT

Certain bacteria demonstrate the ability to target and colonize the tumor microenvironment, a characteristic that positions them as innovative carriers for delivering various therapeutic agents in cancer therapy. Nevertheless, our understanding of how bacteria adapt their physiological condition to the tumor microenvironment remains elusive. In this work, we employed liquid chromatography-tandem mass spectrometry to examine the proteome of E. coli colonized in murine tumors. Compared to E. coli cultivated in the rich medium, we found that E. coli colonized in tumors notably upregulated the processes related to ferric ions, including the enterobactin biosynthesis and iron homeostasis. This finding indicated that the tumor is an iron-deficient environment to E. coli. We also found that the colonization of E. coli in the tumor led to an increased expression of lipocalin 2 (LCN2), a host protein that can sequester the enterobactin. We therefore engineered E. coli in order to evade the nutritional immunity provided by LCN2. By introducing the IroA cluster, the E. coli synthesizes the glycosylated enterobactin, which creates steric hindrance to avoid the LCN2 sequestration. The IroA-E. coli showed enhanced resistance to LCN2 and significantly improved the anti-tumor activity in mice. Moreover, the mice cured by the IroA-E. coli treatment became resistant to the tumor re-challenge, indicating the establishment of immunological memory. Overall, our study underscores the crucial role of bacteria's ability to acquire ferric ions within the tumor microenvironment for effective cancer therapy.


Subject(s)
Escherichia coli , Iron , Lipocalin-2 , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Mice , Iron/metabolism , Neoplasms/therapy , Neoplasms/immunology , Enterobactin/metabolism , Tumor Microenvironment , Cell Line, Tumor
12.
Mol Oncol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750006

ABSTRACT

Bladder cancer poses a significant challenge to chemotherapy due to its resistance to cisplatin, especially at advanced stages. Understanding the mechanisms behind cisplatin resistance is crucial for improving cancer therapy. The enzyme glutathione S-transferase omega class 1 (GSTO1) is known to be involved in cisplatin resistance in colon cancer. This study focused on its role in cisplatin resistance in bladder cancer. Our analysis of protein expression in bladder cancer cells stimulated by secretions from tumor-associated macrophages (TAMs) showed a significant increase in GSTO1. This prompted further investigation into the role of GSTO1 in bladder cancer. We found a strong correlation between GSTO1 expression and cisplatin resistance. Mechanistically, GSTO1 triggered the release of large extracellular vesicles (EVs) that promoted cisplatin efflux, thereby reducing cisplatin-DNA adduct formation and enhancing cisplatin resistance. Inhibition of EV release effectively counteracted the cisplatin resistance associated with GSTO1. In conclusion, GSTO1-mediated EV release may contribute to cisplatin resistance caused by TAMs in bladder cancer. Strategies to target GSTO1 could potentially improve the efficacy of cisplatin in treating bladder cancer.

13.
EMBO Mol Med ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750308

ABSTRACT

Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.

14.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38691444

ABSTRACT

Plant-associated microbiomes play important roles in plant health and productivity. However, despite fruits being directly linked to plant productivity, little is known about the microbiomes of fruits and their potential association with fruit health. Here, by integrating 16S rRNA gene, ITS high-throughput sequencing data, and microbiological culturable approaches, we reported that roots and fruits (pods) of peanut, a typical plant that bears fruits underground, recruit different bacterial and fungal communities independently of cropping conditions and that the incidence of pod disease under monocropping conditions is attributed to the depletion of Bacillus genus and enrichment of Aspergillus genus in geocarposphere. On this basis, we constructed a synthetic community (SynCom) consisting of three Bacillus strains from geocarposphere soil under rotation conditions with high culturable abundance. Comparative transcriptome, microbiome profiling, and plant phytohormone signaling analysis reveal that the SynCom exhibited more effective Aspergillus growth inhibition and pod disease control than individual strain, which was underpinned by a combination of molecular mechanisms related to fungal cell proliferation interference, mycotoxins biosynthesis impairment, and jasmonic acid-mediated plant immunity activation. Overall, our results reveal the filter effect of plant organs on the microbiome and that depletion of key protective microbial community promotes the fruit disease incidence.


Subject(s)
Arachis , Fruit , Microbiota , Plant Diseases , Plant Roots , RNA, Ribosomal, 16S , Soil Microbiology , Fruit/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , RNA, Ribosomal, 16S/genetics , Plant Roots/microbiology , Arachis/microbiology , Aspergillus/genetics , Aspergillus/isolation & purification , Bacillus/genetics , Bacillus/isolation & purification , Plant Growth Regulators/metabolism , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
15.
Science ; 384(6699): 967, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38815011
16.
Int J Biol Macromol ; 271(Pt 1): 132666, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38806081

ABSTRACT

Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.

17.
Fish Shellfish Immunol ; 150: 109649, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797336

ABSTRACT

In mammals, CD4 is found to be expressed on T cells and innate immune cells, however, teleost cells bearing CD4 have not been well identified and characterized. In this study, we identified two different CD4-1+ cell subsets in grass carp (Ctenopharyngodon idella): CD4-1+ lymphocytes (Lym) and CD4-1+ myeloid cells (Mye), both of which had the highest proportions in the head kidney. The mRNA expression analysis showed that CD4-1, CD4-2, TCRß, CD3γ/δ, and LCK1 are highly expressed in CD4-1+ Lym and also expressed in CD4-1+ Mye. Furthermore, we found that CD4-1+ Lym have a Lym morphology and highly express T-cell cytokines, suggesting that they are CD4+ T cells equivalent to mammalian Th cells. On the other hand, CD4-1+ Mye were found to have a morphology of macrophage and highly express macrophage marker gene MCSFR, indicating that they are macrophages. In addition, functional analysis revealed that CD4-1+ Mye possess phagocytic ability and great antigen-processing ability. Taken together, our study sheds further light on the composition and function of CD4+ cells in teleost fish.

18.
J Phys Chem Lett ; 15(22): 5854-5861, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38804436

ABSTRACT

Tin oxide (SnO2) as electron transportation layer (ETL) has demonstrated remarkable performance applied in perovskite solar cells but still accommodated a host of defects such as oxygen vacancies, uncoordinated Sn4+ , and absorbed hydroxyl groups. Here, we use inorganic sodium thiosulfate Na2S2O3 to modify SnO2 nanoparticles in a bulk blending manner. Strong interaction between Na2S2O3 and SnO2 occurs, as reflected from the elemental chemical state change. The interaction has endowed the SnO2 film with better uniformity, increased conductivity, and more matched energy level with perovskite. Moreover, the modified SnO2 film as a substrate could promote the crystallization of perovskite by suppressing unreacted residual PbI2. The trap density from perovskite bulk to the SnO2 film across their interface has been effectively reduced, thus inhibiting the nonradiative recombination and promoting the transportation and extraction of charge carriers. Finally, the solar cell based on modified SnO2 has achieved a champion efficiency of 25.2%, demonstrating the effectiveness and potential of sulfur-containing molecules on optimizing the SnO2 property.

20.
IEEE Trans Image Process ; 33: 3256-3270, 2024.
Article in English | MEDLINE | ID: mdl-38696298

ABSTRACT

Video-based referring expression comprehension is a challenging task that requires locating the referred object in each video frame of a given video. While many existing approaches treat this task as an object-tracking problem, their performance is heavily reliant on the quality of the tracking templates. Furthermore, when there is not enough annotation data to assist in template selection, the tracking may fail. Other approaches are based on object detection, but they often use only one adjacent frame of the key frame for feature learning, which limits their ability to establish the relationship between different frames. In addition, improving the fusion of features from multiple frames and referring expressions to effectively locate the referents remains an open problem. To address these issues, we propose a novel approach called the Multi-Stage Image-Language Cross-Generative Fusion Network (MILCGF-Net), which is based on one-stage object detection. Our approach includes a Frame Dense Feature Aggregation module for dense feature learning of adjacent time sequences. Additionally, we propose an Image-Language Cross-Generative Fusion module as the main body of multi-stage learning to generate cross-modal features by calculating the similarity between video and expression, and then refining and fusing the generated features. To further enhance the cross-modal feature generation capability of our model, we introduce a consistency loss that constrains the image-language similarity and language-image similarity matrices during feature generation. We evaluate our proposed approach on three public datasets and demonstrate its effectiveness through comprehensive experimental results.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Video Recording , Video Recording/methods , Image Processing, Computer-Assisted/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...