Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Membr Biol ; 251(2): 263-276, 2018 04.
Article in English | MEDLINE | ID: mdl-29453559

ABSTRACT

Plant vacuolar H+-transporting inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a crucial enzyme that exists on the tonoplast to maintain pH homeostasis across the vacuolar membrane. This enzyme generates proton gradient between cytosol and vacuolar lumen by hydrolysis of a metabolic byproduct, pyrophosphate (PP i ). The regulation of V-PPase at protein level has drawn attentions of many workers for decades, but its mechanism is still unclear. In this work, we show that AVP1, the V-PPase from Arabidopsis thaliana, is a target protein for regulatory 14-3-3 proteins at the vacuolar membrane, and all twelve 14-3-3 isoforms were analyzed for their association with AVP1. In the presence of 14-3-3ν, -µ, -ο, and -ι, both enzymatic activities and its associated proton pumping of AVP1 were increased. Among these 14-3-3 proteins, 14-3-3 µ shows the highest stimulation on coupling efficiency. Furthermore, 14-3-3ν, -µ, -ο, and -ι exerted protection of AVP1 against the inhibition of suicidal substrate PP i at high concentration. Moreover, the thermal profile revealed the presence of 14-3-3ο improves the structural stability of AVP1 against high temperature deterioration. Additionally, the 14-3-3 proteins mitigate the inhibition of Na+ to AVP1. Besides, the binding sites/motifs of AVP1 were identified for each 14-3-3 protein. Taken together, a working model was proposed to elucidate the association of 14-3-3 proteins with AVP1 for stimulation of its enzymatic activity.


Subject(s)
14-3-3 Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Inorganic Pyrophosphatase/metabolism , 14-3-3 Proteins/genetics , Arabidopsis Proteins/genetics , Hot Temperature , Inorganic Pyrophosphatase/genetics , Sodium/metabolism
2.
J Biol Chem ; 290(2): 1197-209, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25451931

ABSTRACT

Single molecule atomic force microscopy (smAFM) was employed to unfold transmembrane domain interactions of a unique vacuolar H(+)-pyrophosphatase (EC 3.6.1.1) from Vigna radiata. H(+)-Pyrophosphatase is a membrane-embedded homodimeric protein containing a single type of polypeptide and links PPi hydrolysis to proton translocation. Each subunit consists of 16 transmembrane domains with both ends facing the lumen side. In this investigation, H(+)-pyrophosphatase was reconstituted into the lipid bilayer in the same orientation for efficient fishing out of the membrane by smAFM. The reconstituted H(+)-pyrophosphatase in the lipid bilayer showed an authentically dimeric structure, and the size of each monomer was ∼4 nm in length, ∼2 nm in width, and ∼1 nm in protrusion height. Upon extracting the H(+)-pyrophosphatase out of the membrane, force-distance curves containing 10 peaks were obtained and assigned to distinct domains. In the presence of pyrophosphate, phosphate, and imidodiphosphate, the numbers of interaction curves were altered to 7, 8, and 10, respectively, concomitantly with significant modification in force strength. The substrate-binding residues were further replaced to verify these domain changes upon substrate binding. A working model is accordingly proposed to show the interactions between transmembrane domains of H(+)-pyrophosphatase in the presence and absence of substrate and its analog.


Subject(s)
Inorganic Pyrophosphatase/chemistry , Inorganic Pyrophosphatase/ultrastructure , Ion Transport , Vacuoles/enzymology , Fabaceae/chemistry , Fabaceae/enzymology , Hydrolysis , Inorganic Pyrophosphatase/metabolism , Kinetics , Lipid Bilayers/chemistry , Microscopy, Atomic Force , Protein Structure, Tertiary , Protons , Substrate Specificity
3.
J Bioenerg Biomembr ; 46(2): 127-34, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24121937

ABSTRACT

Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.


Subject(s)
Clostridium tetani/enzymology , Inorganic Pyrophosphatase/chemistry , Tryptophan/chemistry , Fluorescence , Mutagenesis, Site-Directed , Protons
4.
J Membr Biol ; 246(12): 959-66, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24121627

ABSTRACT

H⁺-translocating pyrophosphatase (H⁺-PPase, EC 3.6.1.1) plays an important role in acidifying vacuoles by transporting protons across membranes at the expense of pyrophosphate (PP(i)) hydrolysis. Vigna radiata H⁺-PPase (VrH⁺-PPase) contains 16 transmembrane helices (TMs). The hydrophobicity of TM3 is relatively lower than that of most other TMs, and the amino acids in this TM are highly conserved in plants. Furthermore, TM5 and -6, which are the core TMs involving in H⁺-PPase functions, are near TM3. It is thus proposed that TM3 is associated with H⁺-PPase activity. To address this possibility, site-directed mutagenesis was applied in this investigation to determine the role of TM3 in VrH⁺-PPase. Upon alanine/serine substitution, T138 and S142, whose side chains face toward the center TMs, were found to be involved in efficient proton transport. G149/S153 and G160/A164 pairs at the crucial termini of the two GxxxG-like motifs are indispensable in maintaining enzymatic activities and conformational stability. Moreover, stability in the vicinity surrounding G149 is pivotal for efficient expression. S153, M161 and A164 are critical for the K⁺-mediated stimulation of H⁺-PPase. Taken together, our results demonstrate that TM3 plays essential roles in PP(i) hydrolysis, proton transport, expression, and K⁺ stimulation of H⁺-PPase.


Subject(s)
Inorganic Pyrophosphatase/chemistry , Inorganic Pyrophosphatase/metabolism , Plant Proteins , Protein Interaction Domains and Motifs , Amino Acid Sequence , Amino Acid Substitution , Enzyme Activation , Gene Expression , Hydrolysis , Inorganic Pyrophosphatase/genetics , Ions/metabolism , Leucine/chemistry , Models, Molecular , Molecular Sequence Data , Mutation , Protein Structure, Secondary , Sequence Alignment
5.
J Biol Chem ; 288(27): 19312-20, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23720778

ABSTRACT

Homodimeric proton-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H(+)-PPase consists of 14-16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H(+)-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H(+)-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H(+)-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H(+)-PPase upon substrate binding.


Subject(s)
Clostridium tetani/enzymology , Inorganic Pyrophosphatase/chemistry , Protein Multimerization/physiology , Protons , Fluorescence Resonance Energy Transfer/methods , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Ion Transport/physiology , Protein Binding/physiology
6.
J Biol Chem ; 286(14): 11970-6, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21292767

ABSTRACT

H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton transport against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) and is found in various endomembranes of higher plants, bacteria, and some protists. H+-PPase contains seven highly conserved lysines. We examined the functional roles of these lysines, which are, for the most part, found in the cytosolic regions of mung bean H+-PPase by site-directed mutagenesis. Construction of mutants that each had a cytosolic and highly conserved lysine substituted with an alanine resulted in dramatic drops in the PPi hydrolytic activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+-binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition suggests that these lysines are present in the active site. The modifier fluorescein 5'-isothiocyanate (FITC) labeled a lysine at the H+-PPase active site but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S, which suggested that Lys-250 is essential for substrate binding and may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis.


Subject(s)
Inorganic Pyrophosphatase/chemistry , Inorganic Pyrophosphatase/metabolism , Vacuoles/enzymology , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Inorganic Pyrophosphatase/genetics , Lysine/genetics , Lysine/metabolism , Mutagenesis, Site-Directed , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
7.
Biochim Biophys Acta ; 1807(1): 59-67, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20937245

ABSTRACT

Vacuolar H(+)-pyrophosphatase (V-PPase; EC 3.6.1.1) plays a significant role in the maintenance of the pH in cytoplasm and vacuoles via proton translocation from the cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. The topology of V-PPase as predicted by TopPred II suggests that the catalytic site is putatively located in loop e and exposed to the cytosol. The adjacent transmembrane domain 6 (TM6) is highly conserved and believed to participate in the catalytic function and conformational stability of V-PPase. In this study, alanine-scanning mutagenesis along TM6 of the mung bean V-PPase was carried out to identify its structural and functional role. Mutants Y299A, A306S and L317A exhibited gross impairment in both PP(i) hydrolysis and proton translocation. Meanwhile, mutations at L307 and N318 completely abolished the targeting of the enzyme, causing broad cytosolic localization and implicating a possible role of these residues in protein translocation. The location of these amino acid residues was on the same side of the helix wheel, suggesting their involvement in maintaining the stability of enzyme conformation. G297A, E301A and A305S mutants showed declines in proton translocation but not in PP(i) hydrolysis, consequently resulting in decreases in the coupling efficiency. These amino acid residues cluster at one face of the helix wheel, indicating their direct/indirect participation in proton translocation. Taken together, these data indicate that TM6 is crucial to vacuolar H(+)-pyrophosphatase, probably mediating protein targeting, proton transport, and the maintenance of enzyme structure.


Subject(s)
Fabaceae/enzymology , Intracellular Membranes/enzymology , Pyrophosphatases/metabolism , Vacuoles/enzymology , Alanine/genetics , Amino Acid Sequence , Animals , Base Sequence , Catalytic Domain , DNA Primers , Enzyme Stability , Homeostasis , Hydrogen-Ion Concentration , Kinetics , Mutagenesis , Polymerase Chain Reaction , Protein Conformation , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics
8.
J Biol Chem ; 285(31): 23655-64, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20511234

ABSTRACT

Homodimeric H(+)-pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is a unique enzyme playing a pivotal physiological role in pH homeostasis of organisms. This novel H(+)-PPase supplies energy at the expense of hydrolyzing metabolic byproduct, pyrophosphate (PP(i)), for H(+) translocation across membrane. The functional unit for the translocation is considered to be a homodimer. Its putative active site on each subunit consists of PP(i) binding motif, Acidic I and II motifs, and several essential residues. In this investigation structural mapping of these vital regions was primarily determined utilizing single molecule fluorescence resonance energy transfer. Distances between two C termini and also two N termini on homodimeric subunits of H(+)-PPase are 49.3 + or - 4.0 and 67.2 + or - 5.7 A, respectively. Furthermore, putative PP(i) binding motifs on individual subunits are found to be relatively far away from each other (70.8 + or - 4.8 A), whereas binding of potassium and substrate analogue led them to closer proximity. Moreover, substrate analogue but not potassium elicits significant distance variations between two Acidic I motifs and two His-622 residues on homodimeric subunits. Taken together, this study provides the first quantitative measurements of distances between various essential motifs, residues, and putative active sites on homodimeric subunits of H(+)-PPase. A working model is accordingly proposed elucidating the distance variations of dimeric H(+)-PPase upon substrate binding.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Inorganic Pyrophosphatase/chemistry , Inorganic Pyrophosphatase/physiology , Pyrophosphatases/chemistry , Amino Acid Motifs , Catalytic Domain , Clostridium tetani/enzymology , Dimerization , Escherichia coli/enzymology , Ligands , Microsomes/metabolism , Mutation , Protein Sorting Signals , Protein Transport , Spectrometry, Fluorescence
9.
Biochim Biophys Acta ; 1767(7): 965-73, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17543272

ABSTRACT

Plant vacuolar H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1) utilizes inorganic pyrophosphate (PPi) as an energy source to generate a H+ gradient potential for the secondary transport of ions and metabolites across the vacuole membrane. In this study, functional roles of arginine residues in mung bean V-PPase were determined by site-directed mutagenesis. Alignment of amino-acid sequence of K+-dependent V-PPases from several organisms showed that 11 of all 15 arginine residues were highly conserved. Arginine residues were individually substituted by alanine residues to produce R-->A-substituted V-PPases, which were then heterologously expressed in yeast. The characteristics of mutant variants were subsequently scrutinized. As a result, most R-->A-substituted V-PPases exhibited similar enzymatic activities to the wild-type with exception that R242A, R523A, and R609A mutants markedly lost their abilities of PPi hydrolysis and associated H+-translocation. Moreover, mutation on these three arginines altered the optimal pH and significantly reduced K+-stimulation for enzymatic activities, implying a conformational change or a modification in enzymatic reaction upon substitution. In particular, R242A performed striking resistance to specific arginine-modifiers, 2,3-butanedione and phenylglyoxal, revealing that Arg242 is most likely the primary target residue for these two reagents. The mutation at Arg242 also removed F- inhibition that is presumably derived from the interfering in the formation of substrate complex Mg2+-PPi. Our results suggest accordingly that active pocket of V-PPase probably contains the essential Arg242 which is embedded in a more hydrophobic environment.


Subject(s)
Arginine/chemistry , Fabaceae/enzymology , Inorganic Pyrophosphatase/chemistry , Vacuoles/enzymology , Amino Acid Sequence , Amino Acid Substitution , Arginine/genetics , Diacetyl/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Inorganic Pyrophosphatase/genetics , Intracellular Membranes/chemistry , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Phenylglyoxal/chemistry , Trypsin/chemistry
10.
Arch Biochem Biophys ; 442(2): 206-13, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16185650

ABSTRACT

Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton-translocase; it contains a single type of polypeptide of approximately 81kDa. A line of evidence demonstrated that the carboxyl terminus of V-PPase is relatively conserved in various plant V-PPases and presumably locates in the vicinity of the catalytic site. In this study, we attempt to identify the roles of the C-terminus of V-PPase by generating a series of C-terminal deletion mutants over-expressed in Saccharomyces cerevisiae, and determining their enzymatic and proton translocating reactions. Our results showed that the deletion mutation at last 5 amino acids in the C-terminus (DeltaC5) induced a dramatic decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase; but the mutant lacking last 10 amino acids (DeltaC10) retained about 60-70% of the enzymatic activity of wild-type. Truncation of the C-terminus by more than 10 amino acids completely abolished the enzymatic activity and proton translocation of V-PPase. Furthermore, the DeltaC10 mutant displayed a shift in T(1/2) (pretreatment temperature at which half enzymatic activity is observed) but not the optimal pH for PP(i) hydrolytic activity. The deletion of the C-terminus substantially modified apparent K(+) binding constant, but exert no significant changes in the Na(+)-, F(-)-, and Ca(2+)-inhibition of the enzymatic activity of V-PPase. Taken together, we speculate that the C-terminus of V-PPase may play a crucial role in sustaining enzymatic activity and is likely involved in the K(+)-regulation of the enzyme in an indirect manner.


Subject(s)
Amino Acid Sequence/genetics , Inorganic Pyrophosphatase/genetics , Plant Proteins/genetics , Plants/enzymology , Proton Pumps/genetics , Sequence Deletion/genetics , Vacuoles/enzymology , Gene Expression/genetics , Inorganic Pyrophosphatase/metabolism , Ion Transport/physiology , Metals/metabolism , Plant Proteins/metabolism , Plants/genetics , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Proton Pumps/metabolism , Saccharomyces cerevisiae/genetics , Vacuoles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...