Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Physiol B ; 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38584182

ABSTRACT

The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.

2.
Article in English | MEDLINE | ID: mdl-38416162

ABSTRACT

Zebrafish (Danio rerio) are unusual in having two paralogues of the serotonin re-uptake transporter (Sert), slc6a4a (serta) and slc6a4b (sertb), the transporter that serves in serotonin re-uptake from a synapse into the pre-synaptic cell or in serotonin uptake from the extracellular milieu into cells in the peripheral tissues. To address a knowledge gap concerning the specific roles of these paralogues, we used CRISPR/Cas9 technology to generate zebrafish knockout lines predicted to lack functional expression of Serta or Sertb. The consequences of loss-of-function of Serta or Sertb were assessed at the gene expression level, focusing on the serotonergic signalling pathway, and at the behaviour level, focusing on aggression. Whereas serta mRNA was expressed in all tissues examined, with high expression in the heart, gill and brain, only the brain displayed substantial sertb mRNA expression. In both serta-/- and sertb-/- fish, changes in transcript abundances of multiple components of the serotonin signalling pathway were detected, including proteins involved in serotonin synthesis (tph1a, tph1b, tph2, ddc), packaging (vmat2) and degradation (mao), and serotonin receptors (htr1aa, htr1ab). Using a mirror aggression test, serta-/- male but not female fish exhibited greater aggression than wildtype fish. However, both male and female sertb-/- fish displayed less aggression than their wildtype counterparts. These differences in behaviour between serta-/- and sertb-/- individuals hold promise for increasing our understanding of the neurophysiological basis of aggression in zebrafish.

3.
J Exp Biol ; 226(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-37097020

ABSTRACT

The study of breathing in fishes has featured prominently in Journal of Experimental Biology (JEB), particularly during the latter half of the past century. Indeed, many of the seminal discoveries in this important sub-field of comparative respiratory physiology were reported first in JEB. The period spanning 1960-1990 (the 'golden age of comparative respiratory physiology') witnessed intense innovation in the development of methods to study the control of breathing. Many of the guiding principles of piscine ventilatory control originated during this period, including our understanding of the dominance of O2 as the driver of ventilation in fish. However, a critical issue - the identity of the peripheral O2 chemoreceptors - remained unanswered until methods for cell isolation, culture and patch-clamp recording established that gill neuroepithelial cells (NECs) respond to hypoxia in vitro. Yet, the role of the NECs and other putative peripheral or central chemoreceptors in the control of ventilation in vivo remains poorly understood. Further progress will be driven by the implementation of genetic tools, most of which can be used in zebrafish (Danio rerio). These tools include CRISPR/Cas9 for selective gene knockout, and Tol2 systems for transgenesis, the latter of which enables optogenetic stimulation of cellular pathways, cellular ablation and in vivo cell-specific biosensing. Using these methods, the next period of discovery will see the identification of the peripheral sensory pathways that initiate ventilatory responses, and will elucidate the nature of their integration within the central nervous system and their link to the efferent motor neurons that control breathing.


Subject(s)
Oxygen , Zebrafish , Animals , Zebrafish/physiology , Oxygen/metabolism , Fishes/physiology , Neuroepithelial Cells/metabolism , Chemoreceptor Cells/metabolism , Respiration , Gills/metabolism
4.
Respir Physiol Neurobiol ; 285: 103594, 2021 03.
Article in English | MEDLINE | ID: mdl-33271304

ABSTRACT

Serotonergic neuroepithelial cells (NECs) in larval zebrafish are believed to be O2 chemoreceptors. Serotonin (5-HT) within these NECs has been implicated as a neurotransmitter mediating the hypoxic ventilatory response (HVR). Here, we use knockout approaches to discern the role of 5-HT in regulating the HVR by targeting the rate limiting enzyme for 5-HT synthesis, tryptophan hydroxylase (Tph). Using transgenic lines, we determined that Tph1a is expressed in skin and pharyngeal arch NECs, as well as in pharyngeal arch Merkel-like cells (MLCs), whereas Tph1b is expressed predominately in MLCs. Knocking out the two tph1 paralogs resulted in similar changes in detectable serotonergic cell density between the two mutants, yet their responses to hypoxia (35 mmHg) were different. Larvae lacking Tph1a (tph1a-/- mutants) displayed a higher ventilation rate when exposed to hypoxia compared to wild-types, whereas tph1b-/- mutants exhibited a lower ventilation rate suggesting that 5-HT located in locations other than NECs, may play a dominant role in regulating the HVR.


Subject(s)
Chemoreceptor Cells/metabolism , Hypoxia/metabolism , Larva/metabolism , Merkel Cells/metabolism , Neuroepithelial Cells/metabolism , Respiratory Rate/physiology , Serotonin/metabolism , Tryptophan Hydroxylase/metabolism , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Branchial Region/cytology , Branchial Region/metabolism , Skin/cytology , Skin/metabolism , Tryptophan Hydroxylase/genetics , Zebrafish Proteins
5.
Mol Cell Endocrinol ; 509: 110800, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32240728

ABSTRACT

Beginning with the discovery more than 35 years ago that oxygen chemoreceptors of the fish gill are enriched with serotonin, numerous studies have examined the importance of this, and other neuroendocrine factors in piscine chemoreceptor function, and in particular on the chemoreceptor-mediated reflex control of breathing. However, despite these studies, there is continued debate as to the role of neuroendocrine factors in the initiation or modulation of breathing during environmental disturbances or physical activity. In this review, we summarize the state-of-knowledge surrounding the neuroendocrine control of oxygen chemoreception in fish and the associated reflex adjustments to ventilation. We focus on neurohumoral substances that either are present in chemosensory cells or those that are localised elsewhere but have also been implicated in the direct control of breathing. These substances include serotonin, catecholamines (adrenaline and noradrenaline), acetylcholine, purines and gaseous neurotransmitters. Despite the growing indirect evidence for an involvement of these neuroendocrine factors in chemoreception and ventilatory control, direct evidence awaits the incorporation of novel methods currently under development.


Subject(s)
Fishes/physiology , Neurosecretory Systems/physiology , Respiration , Animals , Chemoreceptor Cells/metabolism , Neurotransmitter Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...