Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Eur Spine J ; 33(2): 444-452, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38236278

ABSTRACT

PURPOSE: This study aimed to investigate the relationship between spinal-pelvic parameters and recurrence of lumbar disc herniation (rLDH) after percutaneous endoscopic lumbar discectomy (PELD) through a retrospective case-control study. METHODS: Patients who underwent PELD for single-segment LDH at our hospital were included in this study. The relationship between sagittal balance parameters of the spine and recurrence was analysed through correlation analysis, and ROC curves were plotted. The baseline characteristics, sagittal balance parameters of the spine and radiological parameters of the case and control groups were compared, and the relationship between sagittal balance parameters of the spine and recurrence of rLDH after PELD was determined through univariate and multivariate logistic regression analysis. RESULTS: Correlation analysis showed that PI and ∆PI-LL were negatively correlated with grouping (r = -0.090 and -0.120, respectively, P = 0.001 and 0.038). ROC curve analysis showed that the area under the curve (ROC-AUC) for predicting rLDH based on PI was 0.65 (CI95% = 0.598, 0.720), with a cut-off of 50.26°. The ROC-AUC for predicting rLDH based on ∆PI-LL was 0.56 (CI95% = 0.503, 0.634), with a cut-off of 28.21°. Multivariate logistic regression analysis showed that smoking status (OR = 2.667, P = 0.008), PI ≤ 50.26 (OR = 2.161, P = 0.009), ∆PI-LL ≤ 28.21 (OR = 3.185, P = 0.001) and presence of Modic changes (OR = 4.218, P = 0.001) were independent risk factors, while high DH (OR = 0.788, P = 0.001) was a protective factor. CONCLUSION: PI < 50.26 and ∆PI-LL < 28.21 were risk factors for recurrence of lumbar disc herniation after spinal endoscopic surgery and had some predictive value for post-operative recurrence.


Subject(s)
Diskectomy, Percutaneous , Intervertebral Disc Displacement , Humans , Case-Control Studies , Retrospective Studies , Intervertebral Disc Displacement/surgery , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery
2.
ACS Omega ; 8(26): 23936-23944, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426210

ABSTRACT

Chronic oral diseases are boring, long-term, and discomfort intense diseases, which endanger the physical and mental health of patients constantly. Traditional therapeutic methods based on medicines (including swallowing drugs, applying ointment, or injection in situ) bring much inconvenience and discomfort. A new method possessing accurate, long-term, stable, convenient, and comfortable features is in great need. In this study, we demonstrated a development of one spontaneous administration for the prevention and therapy on a series of oral diseases. By uniting dental resin and medicine-loaded mesoporous molecular sieve, nanoporous medical composite resin (NMCR) was synthesized by a simple physical mixing and light curing method. Physicochemical investigations of XRD, SEM, TEM, UV-vis, N2 adsorption, and biochemical experiments of antibacterial and pharmacodynamic evaluation on periodontitis treatment of SD rats were carried on to characterize an NMCR spontaneous medicine delivery system. Compared to existing pharmacotherapy and in situ treatments, NMCR can keep a quite long time of stable in situ medicine release during the whole therapeutic period. Taking the periodontitis treatment as an instance, the probing pocket depth value in a half-treatment time of 0.69 from NMCR@MINO was much lower than that of 1.34 from the present commercial Periocline ointment, showing an over two times effect.

3.
Rev Sci Instrum ; 94(2): 023001, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36858996

ABSTRACT

Continuously and widely tunable lasers, actively stabilized on a frequency reference, are broadly employed in atomic, molecular, and optical (AMO) physics. The frequency-stabilized optical frequency comb (OFC) provides a novel optical frequency reference, with a broadband spectrum that meets the requirement of laser frequency stabilization. Therefore, we demonstrate a frequency-stabilized and precisely tunable laser system based on it. In this scheme, the laser frequency locked to the OFC is driven to jump over the ambiguity zones, which blocks the wide tuning of the locked laser, and tuned until the mode hopping happens with the always-activated feedback loop. Meanwhile, we compensate the gap of the frequency jump with a synchronized acoustic optical modulator to ensure the continuity. This scheme is applied to an external cavity diode laser (ECDL), and we achieve tuning at a rate of about 7 GHz/s, with some readily available commercial electronics. Furthermore, we tune the frequency-stabilized laser only with the feedback of diode current, and its average tuning speed can exceed 100 GHz/s. Due to the resource-efficient configuration and the simplicity of completion, this scheme can be referenced and can find wide applications in AMO experiments.

4.
Opt Express ; 30(26): 46280-46293, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558585

ABSTRACT

Cavity quantum electrodynamics (cavity QED) with neutral atoms is a promising platform for quantum information processing and optical fiber Fabry-Pérot microcavity with small mode volume is an important integrant for the large light-matter coupling strength. To transport cold atoms to the microcavity, a high-power optical dipole trap (ODT) beam perpendicular to the cavity axis is commonly used. However, the overlap between the ODT beam and the cavity mirrors causes thermal effects inducing a large cavity shift at the locking wavelength and a differential cavity shift at the probe wavelength which disturbs the cavity resonance. Here, we develop a feedback and compensation scheme to maintain the optical fiber microcavity resonant with the lasers at the locking and probe wavelengths simultaneously. The large cavity shift of 210 times the cavity linewidth, which makes the conventional PID scheme ineffective can be suppressed actively by a PIID feedback scheme with an additional I parameter. Differential cavity shift at the probe wavelength can be understood from the photothermal refraction and thermal expansion effects on the mirror coatings and be passively compensated by changing the frequency of the locking laser. A further normal-mode splitting measurement demonstrates the strong coupling between 85Rb atoms and cavity mode after the thermal effects are suppressed, which also confirms successful delivery and trapping of atoms into the optical cavity. This scheme can solve the thermal effects of the high-power ODT beam and will be helpful to cavity QED experimental research.

5.
Adv Sci (Weinh) ; 9(32): e2204247, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36104244

ABSTRACT

Advanced exfoliation techniques are crucial for exploring the intrinsic properties and applications of 2D materials. Though the recently discovered Au-enhanced exfoliation technique provides an effective strategy for the preparation of large-scale 2D crystals, the high cost of gold hinders this method from being widely adopted in industrial applications. In addition, direct Au contact could significantly quench photoluminescence (PL) emission in 2D semiconductors. It is therefore crucial to find alternative metals that can replace gold to achieve efficient exfoliation of 2D materials. Here, the authors present a one-step Ag-assisted method that can efficiently exfoliate many large-area 2D monolayers, where the yield ratio is comparable to Au-enhanced exfoliation method. Differing from Au film, however, the surface roughness of as-prepared Ag films on SiO2 /Si substrate is much higher, which facilitates the generation of surface plasmons resulting from the nanostructures formed on the rough Ag surface. More interestingly, the strong coupling between 2D semiconductor crystals (e.g., MoS2 , MoSe2 ) and Ag film leads to a unique PL enhancement that has not been observed in other mechanical exfoliation techniques, which can be mainly attributed to enhanced light-matter interaction as a result of extended propagation of surface plasmonic polariton (SPP). This work provides a lower-cost and universal Ag-assisted exfoliation method, while at the same time offering enhanced SPP-matter interactions.

6.
ACS Nano ; 14(10): 13834-13840, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32870662

ABSTRACT

Symmetry is highly relevant with various quantities and phenomena in physics. While the translational symmetry breaks at the edges of two-dimensional hexagonal crystalline flakes, it is usually associated with the breaking of central inversion symmetry that is yet to be observed in terms of physical properties. Here, we report an experiment-theory joint study on in-plane compressed single-crystal monolayer WS2 flakes. Although the flakes show a hexagonal appearance with a C6 symmetry, our density functional theory calculations predict that their in-plane strain, geometric structure, work-function, energy bandgap, and mechanical modulus are nonequivalent among the triangular regions with different edge terminations at the atomic scale, and the flakes exhibit self-patterns with a C3 symmetry. Such nonequivalence of physical properties and concomitant self-patterns persist even in a 50 µm-sized monolayer WS2, observed using atomic force microscopy. This indicates that the symmetry arising from the atomic geometry could preserve up to tens of microns for both geometric and properties of the flake, regardless of its mesoscopic geometry, i.e., C6 here. Such a detectable mesoscopic scale and symmetric nano- to mesoscale patterns provide promising building blocks for 2D materials and devices and also allow edge terminations of 2D flakes to be directly distinguished.

8.
Nat Commun ; 11(1): 2453, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415180

ABSTRACT

Two-dimensional materials provide extraordinary opportunities for exploring phenomena arising in atomically thin crystals. Beginning with the first isolation of graphene, mechanical exfoliation has been a key to provide high-quality two-dimensional materials, but despite improvements it is still limited in yield, lateral size and contamination. Here we introduce a contamination-free, one-step and universal Au-assisted mechanical exfoliation method and demonstrate its effectiveness by isolating 40 types of single-crystalline monolayers, including elemental two-dimensional crystals, metal-dichalcogenides, magnets and superconductors. Most of them are of millimeter-size and high-quality, as shown by transfer-free measurements of electron microscopy, photo spectroscopies and electrical transport. Large suspended two-dimensional crystals and heterojunctions were also prepared with high-yield. Enhanced adhesion between the crystals and the substrates enables such efficient exfoliation, for which we identify a gold-assisted exfoliation method that underpins a universal route for producing large-area monolayers and thus supports studies of fundamental properties and potential application of two-dimensional materials.

9.
Global Health ; 15(1): 18, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30819237

ABSTRACT

BACKGROUND: Although the worldwide incidence of tuberculosis (TB) has been slowly decreasing, the migrant workers remains an important gap for regional TB control. In Taiwan, the numbers of the migrant workers from countries with high TB incidence increase significantly in past decades and the impact on public health remains unknown. This study aimed to explore the difference of TB incidence between Taiwanese and the migrant workers. METHODS: The migrant workers are obligated to receive pre-arrival, post-arrival and regular chest X-ray screening during their stay in Taiwan. We retrospectively collected these data extracted from the Alien Workers Health Database in Centers for Disease Control, Taiwan from Jan. 1, 2004 to Dec. 31, 2013. Poisson regression models were used to compare the hazard ratios of TB between Taiwanese and the migrant workers after adjusting gender and age groups. RESULTS: The total migrant workers in Taiwan reached 314,034 persons in 2004 and 489,134 persons in 2013, accounting for 2% of Taiwan population. The TB incidence of migrant workers was similar to Taiwanese (53-73.7 per 105 vs 45.5-76.8 per 105). Comparing with Taiwanese, the TB risk was significantly lower in male migrant workers (HR: 0.76; 95% CI: 0.70-0.83, P < 0.001), but higher in female migrant workers (HR: 1.40; 95% CI: 1.35-1.46, P < 0.001). Besides, we found that the TB risk in migrant workers was 5.30-fold (95% CI: 4.83-5.83, P < 0.001) in youngest group (≤24 year-old) comparing with Taiwanese. CONCLUSIONS: Migrant workers in Taiwan have higher TB incidence than Taiwanese in young groups, especially in females. The mainstay young laborers with latent tuberculosis infection risk is an important vulnerability for public health. Further investigation and health screening are warranted.


Subject(s)
Transients and Migrants/statistics & numerical data , Tuberculosis/epidemiology , Adult , Female , Humans , Incidence , Male , Middle Aged , Taiwan/epidemiology , Young Adult
10.
ACS Nano ; 13(2): 1885-1892, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30653300

ABSTRACT

Heterostructures of two-dimensional layered materials can be functionalized with exotic phenomena that are unpresented with each constituting component. The interface effect plays a key role in determining the electronic properties of the heterostructure, whose characterization requires a correlation with the morphology with atomic-scale precision. Here, we report an investigation on the electronic properties of few-layer Bi(110) films mediated by a NbSe2 substrate. By utilizing scanning tunneling microscopy and spectroscopy, we show a significant variation of the density of states at different Bi film thicknesses, resulting in an unusual superconducting proximity effect that deviates from the conventional monotonous decay behavior. Moreover, the electronic states of the Bi films are also prominently modulated by the Moiré pattern spatially. With first-principles calculations, we illuminate these findings as the results of covalent-like quasi-bonds formed at the Bi/NbSe2 interface, which profoundly alter the charge distributions in the Bi films. Our study indicates a viable way of modulating the electronic properties of ultrathin films by quasi-covalent interfacial couplings beyond conventional van der Waals interactions.

11.
Nanoscale ; 10(47): 22263-22269, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30465580

ABSTRACT

Few-layer tellurium is an emerging quasi-one-dimensional layered material. The striking feature of Te is its presence as various few-layer allotropes (α-δ). Although these allotropes offer substantially different physical properties, only the α phase has been synthesized in neutral few-layers as it is so far the most stable few-layer form. Herein, we show that hole or electron doping could maintain a certain Te phase. The ß, α, γ and δ phases appear as the most stable forms of Te bilayer, in sequence, with bandgap variations over 1 eV. In Te trilayer, a novel metallic chiral α + δ phase emerges, leading to the appearance of chirality. Transitions among these phases, understood at the wavefunction level, are accompanied by the emergence or elimination of inversion centers (α-ß, α-γ, α-α + δ), structural anisotropy (α-γ, γ-δ) and chirality (α-α + δ), which could result in substantial changes in optical and other properties. In light of these findings, our work opens a new avenue for stabilizing different allotropes of layered materials; this is crucial for using their outstanding properties. This study also suggests the possibility of building mono-elemental electronic and optoelectronic heterostructures or devices, which are attractive for future applications in electronics.

12.
ACS Nano ; 12(8): 8770-8780, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30086224

ABSTRACT

The material choice, layer thickness, and twist angle widely enrich the family of van der Waals heterostructures (vdWHs), providing multiple degrees of freedom to engineer their optical and electronic properties. The moiré patterns in vdWHs create a periodic potential for electrons and excitons to yield many interesting phenomena, such as Hofstadter butterfly spectrum and moiré excitons. Here, in the as-grown/transferred twisted bilayer MoS2 (tBLMs), one of the simplest prototypes of vdWHs, we show that the periodic potentials of moiré patterns also modify the properties of phonons of its monolayer MoS2 constituent to generate Raman modes related to moiré phonons. These Raman modes correspond to zone-center phonons in tBLMs, which are folded from the off-center phonons in monolayer MoS2. However, the folded phonons related to crystallographic superlattices are not observed in the Raman spectra. By varying the twist angle, the moiré phonons of tBLM can be exploited to map the phonon dispersions of the monolayer constituent. The lattice dynamics of the moiré phonons are modulated by the patterned interlayer coupling resulting from periodic potential of moiré patterns, as confirmed by density functional theory calculations. The Raman intensity related to moiré phonons in all tBLMs are strongly enhanced when the excitation energy approaches the C exciton energy. This study can be extended to various vdWHs to deeply understand their Raman spectra, moiré phonons, lattice dynamics, excitonic effects, and interlayer coupling.

13.
ACS Nano ; 12(5): 4853-4860, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29688700

ABSTRACT

Atomic substitution offers an important route to achieve compositionally engineered two-dimensional nanostructures and their heterostructures. Despite the recent research progress, the fundamental understanding of the reaction mechanism has still remained unclear. Here, we reveal the atomic substitution mechanism of two-dimensional atomic layered materials. We found that the atomic substitution process depends on the varying lattice constant (strain) in monolayer crystals, dominated by two strain-tuning (self-promoted and self-limited) mechanisms using density functional theory calculations. These mechanisms were experimentally confirmed by the controllable realization of a graded substitution ratio in the monolayers by controlling the substitution temperature and time and further theoretically verified by kinetic Monte Carlo simulations. The strain-tuning atomic substitution processes are of general importance to other two-dimensional layered materials, which offers an interesting route for tailoring electronic and optical properties of these materials.

14.
Sci Bull (Beijing) ; 63(3): 159-168, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-36659001

ABSTRACT

Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus (BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears. This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding (CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV (bulk) to indirect 1.17 eV (2L) and four (two) complex, highly anisotropic and layer-dependent hole (electron) pockets in the first Brillouin zone. It also exhibits an extraordinarily high hole mobility (∼105 cm2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This "one-dimension-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.

15.
Nano Lett ; 17(6): 3383-3390, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28548860

ABSTRACT

Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS2, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...