Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Vis Exp ; (180)2022 02 18.
Article in English | MEDLINE | ID: mdl-35253787

ABSTRACT

More than half of heart failure (HF) cases are classified as heart failure with preserved ejection fraction (HFpEF) worldwide. Large animal models are limited for investigating the fundamental mechanisms of HFpEF and identifying potential therapeutic targets. This work provides a detailed description of the surgical procedure of descending aortic constriction (DAC) in Tibetan minipigs to establish a large animal model of HFpEF. This model used a precisely controlled constriction of the descending aorta to induce chronic pressure overload in the left ventricle. Echocardiography was used to evaluate the morphological and functional changes in the heart. After 12 weeks of DAC stress, the ventricular septum was hypertrophic, but the thickness of the posterior wall was significantly reduced, accompanied by dilation of the left ventricle. However, the LV ejection fraction of the model hearts was maintained at >50% during the 12-week period. Furthermore, the DAC model displayed cardiac damage, including fibrosis, inflammation, and cardiomyocyte hypertrophy. Heart failure marker levels were significantly elevated in the DAC group. This DAC-induced HFpEF in minipigs is a powerful tool for investigating molecular mechanisms of this disease and for preclinical testing.


Subject(s)
Heart Failure , Animals , Models, Anatomic , Stroke Volume , Swine , Swine, Miniature , Tibet
2.
Front Cardiovasc Med ; 8: 788270, 2021.
Article in English | MEDLINE | ID: mdl-35047577

ABSTRACT

Background: Pressure overload can result in dilated cardiomyopathy. The beneficial effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) on heart disorders have been widely recognized. However, the molecular mechanisms underlying their protective effects against cardiomyopathy remain unclear. Methods: Pressure overload in mice induced by 8 weeks of transverse aortic constriction was used to induce dilated cardiomyopathy. A transgenic fat-1 mouse model carrying the n-3 fatty acid desaturase gene fat-1 gene from Caenorhabditis elegans was used to evaluate the mechanism of n-3 PUFAs in this disease. Echocardiography, transmission electron microscopy, and histopathological analyses were used to evaluate the structural integrity and function in pressure overloaded fat-1 hearts. mRNA sequencing, label-free phosphoprotein quantification, lipidomics, Western blotting, RT-qPCR, and ATP detection were performed to examine the effects of n-3 PUFAs in the heart. Results: Compared with wild-type hearts, left ventricular ejection fraction was significantly improved (C57BL/6J [32%] vs. fat-1 [53%]), while the internal diameters of the left ventricle at systole and diastole were reduced in the fat-1 pressure overload hearts. mRNA expression, protein phosphorylation and lipid metabolism were remodeled by pressure overload in wild-type and fat-1 hearts. Specifically, elevation of endogenous n-3 PUFAs maintained the phosphorylation states of proteins in the subcellular compartments of sarcomeres, cytoplasm, membranes, sarcoplasmic reticulum, and mitochondria. Moreover, transcriptomic analysis predicted that endogenous n-3 PUFAs restored mitochondrial respiratory chain function that was lost in the dilated hearts, and this was supported by reductions in detrimental oxylipins and protection of mitochondrial structure, oxidative phosphorylation, and ATP production. Conclusions: Endogenous n-3 PUFAs prevents dilated cardiomyopathy via orchestrating gene expression, protein phosphorylation, and lipid metabolism. This is the first study provides mechanistic insights into the cardioprotective effects of n-3 PUFAs in dilated cardiomyopathy through integrated multi-omics data analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...