Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 16536, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26559337

ABSTRACT

The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

2.
J Phys Chem Lett ; 6(10): 1834-40, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26263257

ABSTRACT

We present spatially-, temporally- and polarization-resolved dual photoluminescence/linear dichroism microscopy experiments that investigate the correlation between long-range order and the nature of exciton states in solution-processed phthalocyanine thin films. The influence of grain boundaries and disorder is absent in these films because typical grain sizes are 3 orders of magnitude larger than focused excitation beam diameters. These experiments reveal the existence of a delocalized singlet exciton, polarized along the high mobility axis in this quasi-1D electronic system. The strong delocalized π orbitals overlap, controlled by the molecular stacking along the high mobility axis, is responsible for breaking the radiative recombination selection rules. Using our linear dichroism scanning microscopy setup, we further established that a rotation of molecules (i.e., a structural phase transition) that occurs above 100 K prevents the observation of this exciton at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...