Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Ann Bot ; 122(3): 359-371, 2018 08 27.
Article in English | MEDLINE | ID: mdl-29771278

ABSTRACT

Background and Aims: Pelota (Pelo) are evolutionarily conserved genes reported to be involved in ribosome rescue, cell cycle control and meiotic cell division. However, there is little known about their function in plants. The aim of this study was to elucidate the function of an ethylmethane sulphonate (EMS)-derived mutation of a Pelo-like gene in rice (named Ospelo). Methods: A dysfunctional mutant was used to characterize the function of OsPelo. Analyses of its expression and sub-cellular localization were performed. The whole-genome transcriptomic change in leaves of Ospelo was also investigated by RNA sequencing. Key Results: The Ospelo mutant showed defects in root system development and spotted leaves at early seedling stages. Map-based cloning revealed that the mutation occurred in the putative Pelo gene. OsPelo was found to be expressed in various tissues throughout the plant, and the protein was located in mitochondria. Defence responses were induced in the Ospelo mutant, as shown by enhanced resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae, coupled with upregulation of three pathogenesis-related marker genes. In addition, whole-genome transcriptome analysis showed that OsPelo was significantly associated with a number of biological processes, including translation, metabolism and biotic stress response. Detailed analysis showed that activation of a number of innate immunity-related genes might be responsible for the enhanced disease resistance in the Ospelo mutant. Conclusions: These results demonstrate that OsPelo positively regulates root development while its loss of function enhances pathogen resistance by pre-activation of defence responses in rice.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Oryza/genetics , Plant Diseases/immunology , Transcriptome , Xanthomonas/physiology , Gene Expression Profiling , Mutation , Oryza/growth & development , Oryza/immunology , Oryza/microbiology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/immunology , Plant Roots/microbiology
2.
Front Plant Sci ; 8: 88, 2017.
Article in English | MEDLINE | ID: mdl-28197164

ABSTRACT

Cytokinins play important roles in regulating plant development, including shoot and root meristems, leaf longevity, and grain yield. However, the in planta functions of rice cytokinin receptors have not been genetically characterized yet. Here we isolated a rice mutant, Osckt1, with enhanced tolerance to cytokinin treatment. Further analysis showed that Osckt1 was insensitive to aromatic cytokinins but responded normally to isoprenoid and phenylurea-type cytokinins. Map-based cloning revealed that the mutation occurred in a putative cytokinin receptor gene, histidine kinase 6 (OsHK6). OsCKT1 was found to be expressed in various tissues throughout the plant and the protein was located in the endoplasmic reticulum. In addition, whole-genome gene expression profiling analysis showed that OsCKT1 was involved in cytokinin regulation of a number of biological processes, including secondary metabolism, sucrose and starch metabolism, chlorophyll synthesis, and photosynthesis. Our results demonstrate that OsCKT1 plays important roles in cytokinin perception and control of root development in rice.

3.
Planta ; 242(1): 203-13, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25893869

ABSTRACT

MAIN CONCLUSION: The involvement of OsKASI in FA synthesis is found to play a critical role in root development of rice. The root system plays important roles in plant nutrient and water acquisition. However, mechanisms of root development and molecular regulation in rice are still poorly understood. Here, we characterized a rice (Oryza sativa L.) mutant with shortened roots due to a defect in cell elongation. Map-based cloning revealed that the mutation occurred in a putative 3-oxoacyl-synthase, an ortholog of ß-ketoacyl-[acyl carrier protein] synthase I (KASI) in Arabidopsis, thus designated as OsKASI. OsKASI was found to be ubiquitously expressed in various tissues throughout the plant and OsKASI protein was localized in the plastid. In addition, OsKASI deficiency resulted in reduced fertility and a remarkable change in fatty acid (FA) composition and contents in roots and seeds. Our results demonstrate that involvement of OsKASI in FA synthesis is required for root development in rice.


Subject(s)
Acyl Carrier Protein/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism , Plant Roots/growth & development , Chromosomes, Plant/genetics , Cloning, Molecular , Fatty Acids/biosynthesis , Fertility , Gene Expression Regulation, Plant , Genetic Complementation Test , Mutation/genetics , Phenotype , Plant Development , Plant Proteins/isolation & purification , Subcellular Fractions/metabolism
4.
Wei Sheng Wu Xue Bao ; 51(2): 249-55, 2011 Feb.
Article in Chinese | MEDLINE | ID: mdl-21574387

ABSTRACT

OBJECTIVE: Nitrite accumulation in aquaculture water is toxic to reared animals. One of the solutions to this problem is to apply denitrifying bacteria. This paper is intended to get a strain of phototrophic bacteria for efficient removal of nitrite from aquaculture water. METHODS: We used soft agar to isolate and purify phototrophic bacteria. We investigated biological characteristics of the isolate by means of light and electronic observations, physical and chemical tests. We analyzed its phylogenetical position based on the sequences of 16S rDNA and the gene that codes for photosynthetic reaction center subunit M (pufM). RESULTS: A photosynthetic bacterial strain, named wps, showing high removal efficiency of nitrite, was isolated from the freshwater ponds. Cells were Gram-negative, rod-shaped, slightly curved, 0.4 - 0.6 x 1.5 - 4.0 microm, motile by means of polar multiple flagella. Intracellular membranes were of the lamellar type. It grew under facultative anaerobic conditions in the light with bacteriochlorophyll a and carotenoid of sppirilloxanthin series as photosynthetic pigment. The optimum growth was obtained at pH 5.5 - 8.5, in a range of 0 - 2% salinity and at 25 - 38 degrees C. The similarity of 16S rDNA between strain wps and Rhodopseudomonas palustris was 98.9% and 94.9% for pufM gene. However, there are significant differences between them in the morphological and physiological characteristics, i. e. grew at pH 5.5; no growth photoautotrophicaly with sodium hydrogen carbonate; could not utilize citrate or formate as only carbon source; required thiamine hydrochloride and calcium pantothenate as growth factors. CONCLUSION: Strain wps may represent a novel species in genus Rhodopseudomonas and possibly find its application in the bioremediation of polluted aquaculture water.


Subject(s)
Photosynthesis , Phylogeny , Rhodopseudomonas/classification , Rhodopseudomonas/metabolism , Denitrification , Fresh Water/microbiology , Molecular Sequence Data , Nitrites/metabolism , Rhodopseudomonas/genetics , Rhodopseudomonas/isolation & purification
5.
Article in English | MEDLINE | ID: mdl-16095937

ABSTRACT

We measured oxygen consumption in juvenile Chinese striped-necked turtles (Ocadia sinensis) after they ingested food, either as a single meal or as double meals, to examine the influence of meal type and feeding frequency on specific dynamic action (SDA). Temporal variation in oxygen consumption after feeding was evident in the ingesting turtles but not in the unfed control turtles. In the single-meal experiment, the peak metabolic rate and the integrated SDA response (the whole energetic cost for the processes of digestion) both did not differ between turtles ingesting mealworms and shrimps when the influence of variation in ingested energy was removed, and the time to reach peak metabolic rate was not affected by meal type and the amount of food ingested. Turtles in the double-meal experiment ingested more energy and hence had a prolonged duration of SDA response than did those in the single-meal experiment, but the integrated SDA response did not differ between both experimental treatments when the influence of variation in ingested energy was removed. Our results show that meal type and feeding frequency have important consequences on the SDA response of juvenile O. sinensis. As the integrated SDA response remained remarkably constant either between turtles ingesting different food or between turtles ingesting the same food but at different frequencies when the influence of variation in ingested energy was removed, we therefore conclude that the energetic cost associated with ingestion is primarily determined by energy content of food ingested in juvenile O. sinensis.


Subject(s)
Turtles/anatomy & histology , Animal Nutritional Physiological Phenomena , Animals , Body Weight , Digestion , Energy Intake , Energy Metabolism , Feeding Behavior , Lipids/chemistry , Oxygen Consumption , Time Factors , Turtles/physiology
6.
Article in English | MEDLINE | ID: mdl-15664324

ABSTRACT

We used the Chinese skink (Eumeces chinensis) as an experimental model to study influence of food type on specific dynamic action (SDA) of feeding. Thirty-three adult males collected from a natural population were divided equally into three (one control and two experimental) groups. We starved all skinks at 30 degrees C for 3 days and then provided the experimental skinks with a single meal consisting of either mealworms or meat [the flesh of the bullfrog (Rana catesbeiana)]. Food ingested by skinks of the two experimental groups differed in lipid content and lean dry mass but not in total dry mass and energy. Defecation following feeding occurred slightly earlier in skinks ingesting mealworms (mean=41.7 h) than in those ingesting meat (mean=47.7 h), but the difference was not significant. Analyses of variance (ANOVAs) with repeated measures showed that temporal variation in oxygen consumption over 72 h after feeding was evident in the experimental skinks but not in the control ones. Oxygen consumption was higher in the experimental skinks than in the control ones during the time interval between 4.5 and 36 h after feeding. The peak metabolic rate was greater but occurred later in skinks ingesting meat than in those ingesting mealworms. The estimated amounts of oxygen consumed by mealworm-fed, meat-fed and unfed skinks at 30 degrees C over 72 h after feeding were 356.5, 393.8 and 295.2 mL, respectively. Our results provide a support for the previous prediction that SDA is affected by types of food ingested by animals as skinks ingesting mealworms and meat differed in the time to reach a peak metabolic rate, the level of the peak metabolic rate and the magnitude of the SDA effect.


Subject(s)
Animal Feed , Feeding Behavior/physiology , Lizards/physiology , Animal Nutritional Physiological Phenomena , Animals , Male , Oxygen Consumption
SELECTION OF CITATIONS
SEARCH DETAIL
...