Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Virulence ; 11(1): 707-718, 2020 01 01.
Article in English | MEDLINE | ID: mdl-32490723

ABSTRACT

With the outbreak of the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, coronaviruses have become a global research hotspot in the field of virology. Coronaviruses mainly cause respiratory and digestive tract diseases, several coronaviruses are responsible for porcine diarrhea, such as porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and emerging swine acute diarrhea syndrome coronavirus (SADS-CoV). Those viruses have caused huge economic losses and are considered as potential public health threats. Porcine torovirus (PToV) and coronaviruses, sharing similar genomic structure and replication strategy, belong to the same order Nidovirales. Here, we developed a multiplex TaqMan-probe-based real-time PCR for the simultaneous detection of PEDV, PDCoV, PToV, and SADS-CoV for the first time. Specific primers and TaqMan fluorescent probes were designed targeting the ORF1a region of PDEV, PToV, and SADS-CoV and the ORF1b region of PDCoV. The method showed high sensitivity and specificity, with a detection limit of 1 × 102 copies/µL for each pathogen. A total of 101 clinical swine samples with signs of diarrhea were analyzed using this method, and the result showed good consistency with conventional reverse transcription PCR (RT-PCR). This method improves the efficiency for surveillance of these emerging and reemerging swine enteric viruses and can help reduce economic losses to the pig industry, which also benefits animal and public health.


Subject(s)
Communicable Diseases, Emerging/veterinary , Coronaviridae Infections/veterinary , Coronaviridae/isolation & purification , Polymerase Chain Reaction , Swine Diseases/diagnosis , Animals , Coinfection/diagnosis , Coinfection/veterinary , Communicable Diseases, Emerging/diagnosis , Coronaviridae/genetics , Coronaviridae Infections/diagnosis , Diarrhea/diagnosis , Diarrhea/veterinary , Open Reading Frames/genetics , Polymerase Chain Reaction/standards , RNA, Viral/genetics , Reproducibility of Results , Sensitivity and Specificity , Swine
2.
Mol Cell Probes ; 53: 101618, 2020 10.
Article in English | MEDLINE | ID: mdl-32534013

ABSTRACT

Viral canine diarrhea has high morbidity and mortality and is prevalent worldwide, resulting in severe economic and spiritual losses to pet owners. However, diarrhea pathogens have similar clinical symptoms and are difficult to diagnose clinically. Thus, fast and accurate diagnostic methods are of great significance for prevention and accurate treatment. In this study, we developed a one-step multiplex TaqMan probe-based real-time PCR for the differential diagnosis of four viruses causing canine diarrhea including, CPV (Canine Parvovirus), CCoV (Canine Coronavirus), CAstV (Canine Astrovirus), and CaKoV (Canine Kobuviruses). The limit of detection was up to 102 copies/µL and performed well with high sensitivity and specificity. This assay was optimized and used to identify possible antagonistic relationships between viruses. From this, artificial pre-experiments were performed for mixed infections, and a total of 82 canine diarrhea field samples were collected from different animal hospitals in Zhejiang, China to assess the method. The virus prevalence was significantly higher than what previously reported based on RT-PCR (Reverse Transcription-Polymerase Chain Reaction). Taken together, these results suggest that the method can be used as a preferred tool for monitoring laboratory epidemics, timely prevention, and effective monitoring of disease progression.


Subject(s)
DNA Probes , Diarrhea/veterinary , Dog Diseases/virology , Real-Time Polymerase Chain Reaction/veterinary , Animals , Avastrovirus , Coronavirus, Canine , Diarrhea/diagnosis , Diarrhea/virology , Dog Diseases/diagnosis , Dogs , Kobuvirus , Parvovirus, Canine , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity
3.
Pathogens ; 8(3)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505777

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging global swine virus that has a propensity for interspecies transmission. It was identified in Hong Kong in 2012. Given that neither specific antiviral drugs nor vaccines are available for newly emerging porcine deltacoronavirus, searching for effective antiviral drugs is a high priority. In this study, lithium chloride (LiCl) and diammonium glycyrrhizinate (DG), which are host-acting antivirals (HAAs), were tested against PDCoV. We found that LiCl and DG inhibited PDCoV replication in LLC-PK1 cells in a dose-dependent manner. The antiviral effects of LiCl and DG occurred at the early stage of PDCoV replication, and DG also inhibited virus attachment to the cells. Moreover, both drugs inhibited PDCoV-induced apoptosis in LLC-PK1 cells. This study suggests LiCl and DG as new drugs for the treatment of PDCoV infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...