Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
ACS Appl Polym Mater ; 6(11): 6416-6424, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38903399

ABSTRACT

Efficient treatment of wastewater contaminated with carcinogenic Cr(VI) has been a long-term challenge for both academic and industrial research efforts. Removal of Cr(VI) species by ion exchange is a relatively simple and efficient method, and its combination with highly tailorable nanomaterials is promising for the treatment of such wastewater. Here, we report a type of cationic porous organic polymer (POP), namely, PTPA-PIP, which can be prepared simply by converting the corresponding aromatic polyamine PTPA to its protonated form, thereby significantly increasing its hydrophilicity and ability to disperse homogeneously in water, crucial for application in water treatment. In addition to detailed characterization of the physicochemical properties of PTPA-PIP (including using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and solid-state NMR techniques), adsorption experiments demonstrate that PTPA-PIP removes low-concentration dichromate anions with very high performance, including excellent exchange capacity (maximum capacity of 230 mg Cr2O7 2-/g PTPA-PIP), ultrafast removal (initial adsorption rate of 83 mg g-1 min-1), excellent selectivity (∼10% loss of adsorption capacity in the presence of 40-fold concentration of competing anions), as well as superior reusability (reusable for at least 5 cycles without compromised performance). These results demonstrate that PTPA-PIP is an outstanding candidate for application in industrial settings for the effective removal of harmful Cr(VI) pollutants in wastewater.

2.
Bioresour Technol ; 406: 130998, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885730

ABSTRACT

Denitrifying anaerobic methane oxidizing (DAMO) archaea plays a significant role in simultaneously nitrogen removal and methane mitigation, yet its limited metabolic activity hinders engineering applications. This study employed biochar to explore its potential for enhancing the metabolic activity and nitrate reduction capacity of DAMO microorganisms. Sawdust biochar (7 g/L) was found to increase the nitrate reduction rate by 2.85 times, although it did not affect the nitrite reduction rate individually. Scanning electron microscopy (SEM) and fluorescence excitation-emission matrix (EEM) analyses revealed that biochar promoted microbial aggregation, and stimulated the secretion of extracellular polymeric substances (EPS). Moreover, biochar bolstered the redox capacity and conductivity of the biofilm, notably enhancing the activity of the electron transfer system by 1.65 times. Key genes involved in intracellular electron transport (Hdr, MHC, Rnf) and membrane transport proteins (BBP, ABC, NDH) of archaea were significantly up-regulated. These findings suggest that biochar regulates electrons generated by reverse methanogenesis to the membrane for nitrate reduction.

3.
Sci Rep ; 14(1): 11026, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744903

ABSTRACT

Currently, the relationship between household size and incident dementia, along with the underlying neurobiological mechanisms, remains unclear. This prospective cohort study was based on UK Biobank participants aged ≥ 50 years without a history of dementia. The linear and non-linear longitudinal association was assessed using Cox proportional hazards regression and restricted cubic spline models. Additionally, the potential mechanisms driven by brain structures were investigated by linear regression models. We included 275,629 participants (mean age at baseline 60.45 years [SD 5.39]). Over a mean follow-up of 9.5 years, 6031 individuals developed all-cause dementia. Multivariable analyses revealed that smaller household size was associated with an increased risk of all-cause dementia (HR, 1.06; 95% CI 1.02-1.09), vascular dementia (HR, 1.08; 95% CI 1.01-1.15), and non-Alzheimer's disease non-vascular dementia (HR, 1.09; 95% CI 1.03-1.14). No significant association was observed for Alzheimer's disease. Restricted cubic splines demonstrated a reversed J-shaped relationship between household size and all-cause and cause-specific dementia. Additionally, substantial associations existed between household size and brain structures. Our findings suggest that small household size is a risk factor for dementia. Additionally, brain structural differences related to household size support these associations. Household size may thus be a potential modifiable risk factor for dementia.


Subject(s)
Dementia , Family Characteristics , Aged , Female , Humans , Male , Middle Aged , Brain/pathology , Dementia/epidemiology , Dementia/etiology , Incidence , Proportional Hazards Models , Prospective Studies , Risk Factors , UK Biobank , United Kingdom/epidemiology
4.
Research (Wash D C) ; 7: 0379, 2024.
Article in English | MEDLINE | ID: mdl-38779490

ABSTRACT

Cement-based materials are the foundation of modern buildings but suffer from intensive energy consumption. Utilizing cement-based materials for efficient energy storage is one of the most promising strategies for realizing zero-energy buildings. However, cement-based materials encounter challenges in achieving excellent electrochemical performance without compromising mechanical properties. Here, we introduce a biomimetic cement-based solid-state electrolyte (labeled as l-CPSSE) with artificially organized layered microstructures by proposing an in situ ice-templating strategy upon the cement hydration, in which the layered micropores are further filled with fast-ion-conducting hydrogels and serve as ion diffusion highways. With these merits, the obtained l-CPSSE not only presents marked specific bending and compressive strength (2.2 and 1.2 times that of traditional cement, respectively) but also exhibits excellent ionic conductivity (27.8 mS·cm-1), overwhelming most previously reported cement-based and hydrogel-based electrolytes. As a proof-of-concept demonstration, we assemble the l-CPSSE electrolytes with cement-based electrodes to achieve all-cement-based solid-state energy storage devices, delivering an outstanding full-cell specific capacity of 72.2 mF·cm-2. More importantly, a 5 × 5 cm2 sized building model is successfully fabricated and operated by connecting 4 l-CPSSE-based full cells in series, showcasing its great potential in self-energy-storage buildings. This work provides a general methodology for preparing revolutionary cement-based electrolytes and may pave the way for achieving zero-carbon buildings.

5.
Chemistry ; 30(25): e202401026, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38607283

ABSTRACT

Invited for the cover of this issue is the group of Long Pan and co-workers at Asymchem Life Sciences (Tianjin) Co. Ltd. The image depicts a novel continuous process for the synthesis of a macrocyclic poly(ethylene glycol) (PEG) sulfite, the precursor to PEG macrocyclic sulfate, a useful building block in PEG chemistry. Read the full text of the article at 10.1002/chem.202304319.

6.
Angew Chem Int Ed Engl ; 63(24): e202400048, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38587199

ABSTRACT

Metal-based chalcogenides exhibit great promise for overall water splitting, yet their intrinsic catalytic reaction mechanisms remain to be fully understood. In this work, we employed operando X-ray absorption (XAS) and in situ Raman spectroscopy to elucidate the structure-activity relationships of low-crystalline cobalt sulfide (L-CoS) catalysts toward overall water splitting. The operando results for L-CoS catalyzing the alkaline hydrogen evolution reaction (HER) demonstrate that the cobalt centers in the bulk are predominantly coordinated by sulfur atoms, which undergo a kinetic structural rearrangement to generate metallic cobalt in S-Co-Co-S moieties as the true catalytically active species. In comparison, during the acidic HER, L-CoS undergoes local structural optimization of Co centers, and H2 production proceeds with adsorption/desorption of key intermediates atop the Co-S-Co configurations. Further operando characterizations highlight the crucial formation of high-valent Co4+ species in L-CoS for the alkaline oxygen evolution reaction (OER), and the formation of such active species was found to be far more facile than in crystalline Co3O4 and Co-LDH references. These insights offer a clear picture of the complexity of active species and site formation in different media, and demonstrate how their restructuring influences the catalytic activity.

7.
Small ; : e2400272, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623970

ABSTRACT

Polymer-in-salt solid-state electrolytes (PIS SSEs) are emerging for high room-temperature ionic conductivity and facile handling, but suffer from poor mechanical durability and large thickness. Here, Al2O3-coated PE (PE/AO) separators are proposed as robust and large-scale substrates to trim the thickness of PIS SSEs without compromising mechanical durability. Various characterizations unravel that introducing Al2O3 coating on PE separators efficiently improves the wettability, thermal stability, and Li-dendrite resistance of PIS SSEs. The resulting PE/AO@PIS demonstrates ultra-small thickness (25 µm), exceptional mechanical durability (55.1 MPa), high decomposition temperature (330 °C), and favorable ionic conductivity (0.12 mS cm-1 at 25 °C). Consequently, the symmetrical Li cells remain stable at 0.1 mA cm-2 for 3000 h, without Li dendrite formation. Besides, the LiFePO4|Li full cells showcase excellent rate capability (131.0 mAh g-1 at 10C) and cyclability (93.6% capacity retention at 2C after 400 cycles), and high-mass-loading performance (7.5 mg cm-2). Moreover, the PE/AO@PIS can also pair with nickel-rich layered oxides (NCM811 and NCM9055), showing a remarkable specific capacity of 165.3 and 175.4 mAh g-1 at 0.2C after 100 cycles, respectively. This work presents an effective large-scale preparation approach for mechanically durable and ultrathin PIS SSEs, driving their practical applications for next-generation solid-state Li-metal batteries.

8.
Biology (Basel) ; 13(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38666863

ABSTRACT

A key step in the study of tree pathology is the identification of an appropriate method for inoculating pathogens of diseases in branches and trunks. Pathogens of diseases in branches and trunks are commonly inoculated through punching, burning, and toothpick inoculation. However, there is a lack of comparative analyses of the inoculation outcomes of these three methods. In this work, six-year-old P. alba var. pyramidalis were inoculated with V. sordida using punching, burning, and toothpick techniques to investigate the differences in the effectiveness of these inoculation methods. Results reveal that the incidence rate was 93.55% in the toothpick inoculation group, significantly higher than the 80.65% in the burning inoculation group (chi-square, n = 90, p = 0.007), while punching inoculation exhibited significant pathological responses in the early stages, with spontaneous healing in the later stage. Additionally, toothpick inoculation was more efficient in inducing Valsa canker when inoculating the pathogen at the bottom of the tree, with lower intra- and inter-row spacing (stand density) providing better outcomes than higher intra- and inter-row spacing. The results of this study demonstrate that toothpick inoculation is an optimal option for studying the artificial inoculation of V. sordida in six-year-old P. alba var. pyramidalis, providing technical support for research on poplar diseases and offering a theoretical basis for the inoculation of other diseases in the branch and trunk.

9.
Nat Commun ; 15(1): 1934, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431736

ABSTRACT

Ammonium ion batteries are promising for energy storage with the merits of low cost, inherent security, environmental friendliness, and excellent electrochemical properties. Unfortunately, the lack of anode materials restricts their development. Herein, we utilized density functional theory calculations to explore the V2CTx MXene as a promising anode with a low working potential. V2CTx MXene demonstrates pseudocapacitive behavior for ammonium ion storage, delivering a high specific capacity of 115.9 mAh g-1 at 1 A g-1 and excellent capacity retention of 100% after 5000 cycles at 5 A g-1. In-situ electrochemical quartz crystal microbalance measurement verifies a two-step electrochemical process of this unique pseudocapacitive storage behavior in the ammonium acetate electrolyte. Theoretical simulation reveals reversible electron transfer reactions with [NH4+(HAc)3]···O coordination bonds, resulting in a superior ammonium ion storage capacity. The generality of this acetate ion enhancement effect is also confirmed in the MoS2-based ammonium-ion battery system. These findings open a new door to realizing high capacity on ammonium ion storage through acetate ion enhancement, breaking the capacity limitations of both Faradaic and non-Faradaic energy storage.

10.
J Hazard Mater ; 466: 133683, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38310847

ABSTRACT

The conventional perchlorate (ClO4-) reduction typically necessitates anaerobic conditions. However, in this study, we observed efficient ClO4- reduction using CH4 as the electron donor in a microaerobic environment. The maximum ClO4- removal flux of 2.18 g/m2·d was achieved in CH4-based biofilm. The kinetics of ClO4- reduction showed significant differences, with trace oxygen increasing the reduction rate of ClO4-, whereas oxygen levels exceeding 2 mg/L decelerated the ClO4- reduction. In the absence of exogenous oxygen, anaerobic methanotrophic (ANME) archaea contribute more than 80% electrons through the reverse methanogenesis pathway for ClO4- reduction. Simultaneously, microorganisms activate CH4 by utilizing oxygen generated from chlorite (ClO2-) disproportionation. In the presence of exogenous oxygen, methane oxidizers predominantly consume oxygen to drive the aerobic oxidation of methane. It is indicated that methane oxidizers and perchlorate reducing bacteria can form aggregates to resist external oxygen shocks and achieve efficient ClO4- reduction under microaerobic condition. These findings provide new insights into biological CH4 mitigation and ClO4- removal in hypoxic environment.


Subject(s)
Methane , Perchlorates , Methane/metabolism , Perchlorates/metabolism , Archaea/metabolism , Oxidation-Reduction , Anaerobiosis , Oxygen/metabolism
11.
Biomolecules ; 14(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38397423

ABSTRACT

Systemic chronic inflammation is recognized as a significant contributor to the development of obesity-related insulin resistance. Previous studies have revealed the physiological benefits of resistant dextrin (RD), including obesity reduction, lower fasting glucose levels, and anti-inflammation. The present study investigated the effects of RD intervention on insulin resistance (IR) in Kunming mice, expounding the mechanisms through the gut microbiome and transcriptome of white adipose. In this eight-week study, we investigated changes in tissue weight, glucose-lipid metabolism levels, serum inflammation levels, and lesions of epididymal white adipose tissue (eWAT) evaluated via Hematoxylin and Eosin (H&E) staining. Moreover, we analyzed the gut microbiota composition and transcriptome of eWAT to assess the potential protective effects of RD intervention. Compared with a high-fat, high-sugar diet (HFHSD) group, the RD intervention significantly enhanced glucose homeostasis (e.g., AUC-OGTT, HOMA-IR, p < 0.001), and reduced lipid metabolism (e.g., TG, LDL-C, p < 0.001) and serum inflammation levels (e.g., IL-1ß, IL-6, p < 0.001). The RD intervention also led to changes in the gut microbiota composition, with an increase in the abundance of probiotics (e.g., Parabacteroides, Faecalibaculum, and Muribaculum, p < 0.05) and a decrease in harmful bacteria (Colidextribacter, p < 0.05). Moreover, the RD intervention had a noticeable effect on the gene transcription profile of eWAT, and KEGG enrichment analysis revealed that differential genes were enriched in PI3K/AKT, AMPK, in glucose-lipid metabolism, and in the regulation of lipolysis in adipocytes signaling pathways. The findings demonstrated that RD not only ameliorated IR, but also remodeled the gut microbiota and modified the transcriptome profile of eWAT.


Subject(s)
Animals, Outbred Strains , Gastrointestinal Microbiome , Insulin Resistance , Mice , Animals , Transcriptome , Dextrins/pharmacology , Triticum/metabolism , Starch , Phosphatidylinositol 3-Kinases/metabolism , Obesity/metabolism , Inflammation/genetics , Glucose/pharmacology , Mice, Inbred C57BL
12.
Nanoscale ; 16(4): 1751-1757, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38198211

ABSTRACT

Two-dimensional transition metal compounds (2D TMCs) have been widely reported in the fields of energy storage and conversion, especially in metal-ion storage. However, most of them are crystalline and lack active sites, and this brings about sluggish ion storage kinetics. In addition, TMCs are generally nonconductors or semiconductors, impeding fast electron transfer at high rates. Herein, we propose a facile one-step route to synthesize amorphous 2D TiO2 with a carbon coating (a-2D-TiO2@C) by simultaneous derivatization and exfoliation of a multilayered Ti3C2Tx MXene. The amorphous structure endows 2D TiO2 with abundant active sites for fast ion adsorption and diffusion, while the carbon coating can facilitate electron transport in an electrode. Owing to these intriguing structural and compositional synergies, a-2D-TiO2@C delivers good cycling stability with a long-term capacity retention of 86% after 2000 cycles at 1.0 A g-1 in K-ion storage. When paired with Prussian blue (KPB) cathodes, it exhibits a high full-cell capacity of 50.8 mA h g-1 at 100 mA g-1 after 140 cycles, which demonstrates its great potential in practical applications. This contribution exploits a new approach for the facile synthesis of a-2D-TMCs and their broad applications in energy storage and conversion.

13.
Chemistry ; 30(25): e202304319, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38277192

ABSTRACT

Many macrocyclic compounds are attractive drug-like molecules or intermediates due to their special properties. However, the bulk synthesis of such compounds are hindered by the necessity of using diluted solutions, in order to prevent intermolecular reactions that yields oligomer impurities, thereby resulting in a low production efficiency. Such challenge can be adequately addressed by using continuous reactors, allowing improved efficiency with smaller space footprints. In this work, we proposed a novel continuous process for the synthesis of a macrocyclic sulfite of tetraethylene glycol (PEG4-MCSi), which is a precursor to a very useful building block, PEG4-macrocyclic sulfate (PEG4-MCS). The basic reaction parameters, including stoichiometry and temperature, were first confirmed with small batch reactions, and the effectiveness of coiled reactors and continuous stirred tank reactors (CSTRs) were compared. Cascaded CSTRs were proven to be suitable, and the reaction parameters were subject to further optimization to give a robust continuous process. The process was then tested with 4 parallel runs for up to 64 h. Finally, the merits and demerits of batch and continuous reactions were also compared, demonstrating the suitability of latter in the bulk production of macrocyclic PEG-MCSi compounds.

14.
Dalton Trans ; 53(6): 2670-2677, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38224288

ABSTRACT

Chlorhexidine dodecyl sulfate (CHX-DS) was synthesized and characterized via single-crystal X-ray diffraction (SC-XRD), 1H nuclear magnetic resonance (NMR) spectroscopy, 1H nuclear Overhauser effect spectroscopy (NOESY), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). The solid-state structure, comprising a 1 : 2 stoichiometric ratio of chlorhexidine cations [C22H30Cl2N10]2+ to dodecyl sulfate anions [C12H25SO4]-, is the first report of chlorhexidine isolated with a surfactant. CHX-DS exhibits broad-spectrum antibacterial activity and demonstrates superior efficacy for reducing bacteria-generated volatile sulfur compounds (VSCs) as compared to chlorhexidine gluconate (CHG). The minimum inhibitory concentrations (MICs) of CHX-DS were 7.5, 2.5, 2.5, and 10 µM for S. enterica, E. coli, S. aureus, and S. mutans, respectively. Furthermore, MIC assays for E. coli and S. mutans demonstrate that CHX-DS and CHX exhibit a statistically significant efficacy enhancement in 2.5 µM treatment as compared to CHG. CHX-DS was incorporated into SBA-15, a mesoporous silica nanoparticle (MSN) framework, and its release was qualitatively measured via UV-vis in aqueous media, which suggests its potential as an advanced functional material for drug delivery applications.


Subject(s)
Chlorhexidine , Escherichia coli , Sodium Dodecyl Sulfate , Chlorhexidine/pharmacology , Chlorhexidine/chemistry , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Surface-Active Agents/pharmacology
16.
J Am Chem Soc ; 145(51): 28191-28203, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38091467

ABSTRACT

We demonstrate the effective establishment of long-range electrostatic interactions among colloidal silica nanospheres through acid treatment, enabling their assembly into colloidal crystals at remarkably low concentrations. This novel method overcomes the conventional limitation in colloidal silica assembly by removing entrapped NH4+ ions and enhancing the electrical double layer (EDL) thickness, offering a time-efficient alternative to increase electrostatic interactions compared with methods like dialysis. The increased EDL thickness facilitates the assembly of SiO2 nanospheres into a body-centered-cubic lattice structure at low particle concentrations, allowing for broad spectrum tunability and high tolerance to particle size polydispersity. Further, we uncover a disorder-order transition during colloidal crystallization at low particle concentrations, with the optimal concentration for crystal formation governed by both thermodynamic and kinetic factors. This work not only provides insights into assembly mechanisms but also paves the way for the design and functionalization of colloidal silica-based photonic crystals in diverse applications.

17.
Nat Commun ; 14(1): 7423, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973961

ABSTRACT

Stannous fluoride (SnF2) is an effective fluoride source and antimicrobial agent that is widely used in commercial toothpaste formulations. The antimicrobial activity of SnF2 is partly attributed to the presence of Sn(II) ions. However, it is challenging to directly determine the Sn speciation and oxidation state within commercially available toothpaste products due to the low weight loading of SnF2 (0.454 wt% SnF2, 0.34 wt% Sn) and the amorphous, semi-solid nature of the toothpaste. Here, we show that dynamic nuclear polarization (DNP) enables 119Sn solid-state NMR experiments that can probe the Sn speciation within commercially available toothpaste. Solid-state NMR experiments on SnF2 and SnF4 show that 19F isotropic chemical shift and 119Sn chemical shift anisotropy (CSA) are highly sensitive to the Sn oxidation state. DNP-enhanced 119Sn magic-angle turning (MAT) 2D NMR spectra of toothpastes resolve Sn(II) and Sn(IV) by their 119Sn chemical shift tensor parameters. Fits of DNP-enhanced 1D 1H → 119Sn solid-state NMR spectra allow the populations of Sn(II) and Sn(IV) within the toothpastes to be estimated. This analysis reveals that three of the four commercially available toothpastes contained at least 80% Sn(II), whereas one of the toothpaste contained a significantly higher amount of Sn(IV).

18.
Nanomicro Lett ; 15(1): 225, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37831299

ABSTRACT

Exploiting high-rate anode materials with fast K+ diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe2/ZnTe), which are anchored onto two-dimensional (2D) Ti3C2Tx MXene nanosheets. Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe2/ZnTe interfaces, improving K+ diffusion and adsorption. In addition, the different work functions between CoTe2/ZnTe induce a robust built-in electric field at the CoTe2/ZnTe interface, providing a strong driving force to facilitate charge transport. Moreover, the conductive and elastic Ti3C2Tx can effectively promote electrode conductivity and alleviate the volume change of CoTe2/ZnTe heterostructures upon cycling. Owing to these merits, the resulting CoTe2/ZnTe/Ti3C2Tx (CZT) exhibit excellent rate capability (137.0 mAh g-1 at 10 A g-1) and cycling stability (175.3 mAh g-1 after 4000 cycles at 3.0 A g-1, with a high capacity retention of 89.4%). More impressively, the CZT-based full cells demonstrate high energy density (220.2 Wh kg-1) and power density (837.2 W kg-1). This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.

20.
Front Nutr ; 10: 1241580, 2023.
Article in English | MEDLINE | ID: mdl-37693241

ABSTRACT

In this paper, we study the effect of microbial fermentation on the nutrient composition and flavor of sweet potato slurry, different strains of Aspergillus niger, Saccharomyces cerevisiae, Lactobacillus plantarum, Bacillus coagulans, Bacillus subtilis, Lactobacillus acidophilus, and Bifidobacterium brevis were employed to ferment sweet potato slurry. After 48 h of fermentation with different strains (10% inoculation amount), we compared the effects of several strains on the nutritional and functional constituents (protein, soluble dietary fiber, organic acid, soluble sugar, total polyphenol, free amino acid, and sensory characteristics). The results demonstrated that the total sugar level of sweet potato slurry fell significantly after fermentation by various strains, indicating that these strains can utilize the nutritious components of sweet potato slurry for fermentation. The slurry's total protein and phenol concentrations increased significantly, and many strains demonstrated excellent fermentation performance. The pH of the slurry dropped from 6.78 to 3.28 to 5.95 after fermentation. The fermentation broth contained 17 free amino acids, and the change in free amino acid content is closely correlated with the flavor of the sweet potato fermentation slurry. The gas chromatography-mass spectrometry results reveal that microbial fermentation can effectively increase the kinds and concentration of flavor components in sweet potato slurry, enhancing its flavor and flavor profile. The results demonstrated that Aspergillus niger fermentation of sweet potato slurry might greatly enhance protein and total phenolic content, which is crucial in enhancing nutrition. However, Bacillus coagulans fermentation can enhance the concentration of free amino acids in sweet potato slurry by 64.83%, with a significant rise in fresh and sweet amino acids. After fermentation by Bacillus coagulans, the concentration of lactic acid and volatile flavor substances also achieved its highest level, which can considerably enhance its flavor. The above results showed that Aspergillus niger and Bacillus coagulans could be the ideal strains for sweet potato slurry fermentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...