Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 93: 117465, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37688997

ABSTRACT

Phosphatidylinositol transfer proteins (PITPs) are ubiquitous in eukaryotes and are involved in the regulation of phospholipid metabolism, membrane trafficking, and signal transduction. Sec14 is a yeast PITP that has been shown to transfer phosphatidylinositol (PI) or phosphatidylcholine (PC) from the endoplasmic reticulum to the Golgi. It is now believed that Sec14 may play a greater role than just shuttling PI and PC throughout the cell. Genetic evidence suggests that retrieval of membrane-bound PI by Sec14 also manages to present PI to the phosphatidylinositol-4-kinase, Pik1, to generate phosphatidylinositol-4-phosphate, PI(4)P. To test this hypothetical model, we designed a photocleavable bolalipid to span the entire membrane, having one phosphatidylcholine or phosphatidylinositol headgroup on each leaflet connected by a photocleavable diacid. Sec14 should not be able to present the bola-PI to Pik1 for phosphorylation as the head group will be difficult to lift from the bilayer as it is tethered on the opposite leaflet. After photocleavage the two halves would behave as a normal phospholipid, thus phosphorylation by Pik1 would resume. We report here the synthesis of a photocleavable bola-PC, a precursor to the desired bola-PI. The mono-photocleavable bola-PC lipid was designed to contain two glycerol molecules with choline head groups connected through a phosphodiester bond at the sn3 position. Each glycerol was acylated with palmitic acid at the sn1 position. These two glycerol moieties were then connected through their respective sn2 hydroxyls via a photocleavable dicarboxylic acid containing a nitrophenyl ethyl photolabile protecting group. The bola-PC and its precursors were found to undergo efficient photocleavage when irradiated in solution or in vesicles with 365 nm light for two minutes. Treatment of the bola-PC with a mutant phospholipase D and myo-inositol produced a mono-inositol bola-PC-PI.


Subject(s)
Glycerol , Phosphatidylcholines , Phosphorylation , Phospholipids , Phosphatidylinositols
2.
Biochim Biophys Acta Biomembr ; 1861(3): 619-630, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30543784

ABSTRACT

Fluorescence resonance energy transfer (FRET) assays and membrane binding determinations were performed using three phosphatidylinositol transfer proteins, including the yeast Sec14 and two mammalian proteins PITPα and PITPß. These proteins were able to specifically bind the fluorescent phosphatidylcholine analogue NBD-PC ((2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine)) and to transfer it to small unilamellar vesicles (SUVs). Rate constants for transfer to vesicles comprising 100% PC were slower for all proteins than when increasing percentages of phosphatidylinositol were incorporated into the same SUVs. The rates of ligand transfer by Sec14 were insensitive to the inclusion of equimolar amounts of another anionic phospholipid phosphatidylserine (PS), but the rates of ligand transfer by both mammalian PITPs were strikingly enhanced by the inclusion of phosphatidic acid (PA) in the receptor SUV. Binding of Sec14 to immobilized bilayers was substantial, while that of PITPα and PITPß was 3-7 times weaker than Sec14 depending on phospholipid composition. When small proportions of the phosphoinositide PI(4)P were included in receptor SUVs (either with PI or not), Sec14 showed substantially increased rates of NBD-PC pick-up, whereas the PITPs were unaffected. The data are supportive of a role for PITPß as functional PI transfer protein in vivo, but that Sec14 likely has a more elaborate function.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , In Vitro Techniques/methods , Lipid Metabolism , Phosphatidylinositols/metabolism , Phospholipid Transfer Proteins/metabolism , Animals , Azoles/chemistry , Azoles/metabolism , Biological Transport , Carrier Proteins/metabolism , Cattle , Humans , Ligands , Nitrobenzenes/chemistry , Nitrobenzenes/metabolism , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Phospholipids/chemistry , Phospholipids/metabolism , Protein Binding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Biochem Cell Biol ; 94(6): 528-533, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27783542

ABSTRACT

Phosphatidylinositol transfer proteins (PITPs) are believed to be lipid transfer proteins because of their ability to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments, in vitro. However, the detailed mechanism of this transfer process is not fully established. To further understand the transfer mechanism of PITPs we examined the interaction of PITPs with membranes using dual polarization interferometry (DPI), which measures protein binding affinity on a flat immobilized lipid surface. In addition, a fluorescence resonance energy transfer (FRET)-based assay was also employed to monitor how quickly PITPs transfer their ligands to lipid vesicles. DPI analysis revealed that PITPß had a higher affinity to membranes compared with PITPα. Furthermore, the FRET-based transfer assay revealed that PITPß has a higher ligand transfer rate compared with PITPα. However, both PITPα and PITPß demonstrated a preference for highly curved membrane surfaces during ligand transfer. In other words, ligand transfer rate was higher when the accepting vesicles were highly curved.


Subject(s)
Cell Membrane/metabolism , Lipids/chemistry , Phosphatidylinositols/metabolism , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/metabolism , Fluorescence Resonance Energy Transfer , Humans , Ligands , Mutation/genetics , Phosphatidylinositols/chemistry , Phospholipid Transfer Proteins/genetics , Protein Binding , Protein Conformation
4.
Lipids ; 50(3): 323-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25603781

ABSTRACT

Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. We examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.


Subject(s)
Carrier Proteins/metabolism , Cell Membrane/physiology , Liver/cytology , Phosphates/metabolism , Animals , Endosomes/metabolism , Humans , Interferometry/methods , Liver/metabolism , Stress, Physiological
5.
Biochem J ; 441(1): 189-98, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21933153

ABSTRACT

Vitamin E isoforms have opposing regulatory effects on leucocyte recruitment during inflammation. Furthermore, in vitro, vitamin E isoforms have opposing effects on leucocyte migration across endothelial cells by regulating VCAM (vascular cell-adhesion molecule)-1 activation of endothelial cell PKCα (protein kinase Cα). However, it is not known whether tocopherols directly regulate cofactor-dependent or oxidative activation of PKCα. We report in the present paper that cofactor-dependent activation of recombinant PKCα was increased by γ-tocopherol and was inhibited by α-tocopherol. Oxidative activation of PKCα was inhibited by α-tocopherol at a 10-fold lower concentration than γ-tocopherol. In binding studies, NBD (7-nitrobenz-2-oxa-1,3-diazole)-tagged α-tocopherol directly bound to full-length PKCα or the PKCα-C1a domain, but not PKCζ. NBD-tagged α-tocopherol binding to PKCα or the PKCα-C1a domain was blocked by diacylglycerol, α-tocopherol, γ-tocopherol and retinol, but not by cholesterol or PS (phosphatidylserine). Tocopherols enhanced PKCα-C2 domain binding to PS-containing lipid vesicles. In contrast, the PKCα-C2 domain did not bind to lipid vesicles containing tocopherol without PS. The PKCα-C1b domain did not bind to vesicles containing tocopherol and PS. In summary, α-tocopherol and γ-tocopherol bind the diacylglycerol-binding site on PKCα-C1a and can enhance PKCα-C2 binding to PS-containing vesicles. Thus the tocopherols can function as agonists or antagonists for differential regulation of PKCα.


Subject(s)
Enzyme Activation/physiology , Protein Kinase C-alpha/chemistry , Protein Kinase C-alpha/metabolism , alpha-Tocopherol/metabolism , gamma-Tocopherol/metabolism , Cloning, Molecular , Enzyme-Linked Immunosorbent Assay , Escherichia coli , Fluorescent Dyes , Oxidation-Reduction , Protein Binding , Surface Plasmon Resonance , alpha-Tocopherol/chemistry , gamma-Tocopherol/chemistry
6.
J Mol Biol ; 405(4): 972-88, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21110980

ABSTRACT

Previous work has shown that the α-tocopherol transfer protein (α-TTP) can bind to vesicular or immobilized phospholipid membranes. Revealing the molecular mechanisms by which α-TTP associates with membranes is thought to be critical to understanding its function and role in the secretion of tocopherol from hepatocytes into the circulation. Calculations presented in the Orientations of Proteins in Membranes database have provided a testable model for the spatial arrangement of α-TTP and other CRAL-TRIO family proteins with respect to the lipid bilayer. These calculations predicted that a hydrophobic surface mediates the interaction of α-TTP with lipid membranes. To test the validity of these predictions, we used site-directed mutagenesis and examined the substituted mutants with regard to intermembrane ligand transfer, association with lipid layers and biological activity in cultured hepatocytes. Substitution of residues in helices A8 (F165A and F169A) and A10 (I202A, V206A and M209A) decreased the rate of intermembrane ligand transfer as well as protein adsorption to phospholipid bilayers. The largest impairment was observed upon mutation of residues that are predicted to be fully immersed in the lipid bilayer in both apo (open) and holo (closed) conformations such as Phe165 and Phe169. Mutation F169A, and especially F169D, significantly impaired α-TTP-assisted secretion of α-tocopherol outside cultured hepatocytes. Mutation of selected basic residues (R192H, K211A, and K217A) had little effect on transfer rates, indicating no significant involvement of nonspecific electrostatic interactions with membranes.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Amino Acid Sequence , Amino Acid Substitution , Base Sequence , Binding Sites/genetics , Carrier Proteins/genetics , DNA Primers/genetics , Hep G2 Cells , Hepatocytes/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , In Vitro Techniques , Ligands , Lipid Bilayers/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Static Electricity , Thermodynamics , alpha-Tocopherol/metabolism
7.
J Org Chem ; 75(9): 2883-92, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20387845

ABSTRACT

Fluorescent nitrobenzoxadiazole analogues of alpha-tocopherol (NBD-alpha-Tocs; lambda(ex) = 468 nm, lambda(em) = 527 nm) have been made previously to aid study of the intracellular location and transfer of vitamin E. However, these analogues are susceptible to photobleaching while under illumination for confocal microscopy as well as in in vitro FRET transfer assays. Here we report the synthesis of three fluorescent analogues of alpha-tocopherol incorporating the more robust dipyrrometheneboron difluoride (BODIPY) fluorophore. A BODIPY-linked chromanol should have no intervening polar functional groups that might interfere with binding to the hydrophobic binding site of the tocopherol transfer protein (alpha-TTP). A key step in bringing the two ring systems together was a metathesis reaction of vinyl chromanol and an alkenyl BODIPY. An o-tolyl containing second generation Grubbs catalyst was identified as the best catalyst for effecting the metathesis without detectable alkene isomerization, which when it occurred produced a mixture of chain lengths in the alkyl linker. C8-BODIPY-alpha-Toc 10c (lambda(ex) = 507 nm, lambda(em) = 511 nm, epsilon(507) = 83,000 M(-1) cm(-1)) having an eight-carbon chain between the chromanol and fluorophore, had the highest affinity for alpha-TTP (K(d) = 94 +/- 3 nM) and bound specifically as it could not be displaced with cholesterol.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemical synthesis , Tocopherols/chemistry , alpha-Tocopherol/chemistry , Binding Sites , Carrier Proteins/chemistry , Cells, Cultured , Cholesterol/chemistry , Chromans/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Humans , Molecular Structure , Vinyl Compounds/chemistry
8.
Bioorg Med Chem ; 18(2): 777-86, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20006517

ABSTRACT

A polyunsaturated analogue of alpha-tocopherol was synthesized that is both fluorescent and sensitive to peroxidative chemistry that occurs in phospholipid membranes. alpha-Tocohexaenol 1, [(S)-2,5,7,8-tetramethyl-2-((1E/Z,3E,5E,7E,9E)-4,8,12-trimethyltrideca-1,3,5,7,9,11-hexaenyl)chroman-6-ol, alpha-T6] was prepared by condensing a known triene fragment triphenyl-(2,6-dimethyl-octa-2,4,6-trienoic acid methyl ester)-phosphonium bromide with a protected chromanol aldehyde, (2S)-6-{[tert-butyl(dimethyl)silyl]oxy}-2,5,7,8-tetra-methyl-3,4-dihydro-2H-chromene-2-carbaldehyde. The full side chain was then completed with isopentyl(tri-n-butyl)phosphonium bromide to give 1. The geometry of the C1'-C2' alkene appears to be Z (cis) although the coupling constants of the olefinic protons are intermediate between values normally assigned to E and Z-isomers. In ethanol, alpha-T6 has a maximum absorption at 368nm with an absorption coefficient of 45,000M(-1) cm(-1), and displays a maximum fluorescence emission at 523nm. The susceptibility of alpha-T6 to peroxidative chemistry was dependent on the concentration of azo-initiators of lipid oxidation in acetonitrile solution as well as in phospholipid vesicles. A loss of fluorescence at 520nm was observed when alpha-T6 (vesicles or alpha-T6-lipid mixtures) was exposed to peroxidative conditions, and this loss mirrored the production of conjugated dienes and trienes during the peroxidation of bulk phospholipids. Addition of natural alpha-tocopherol during the AMVN induced oxidation of 4microM alpha-T6 and 0.5mg/ml soybean PC induced a characteristic lag phase, after which the fluorescence of alpha-T6 began to lessen. Thus, alpha-T6 may be a useful reporter not only of tocopherol location in cells, but also of the extent of peroxidative events.


Subject(s)
Chromans/chemical synthesis , Fluorescence , Polyenes/chemistry , alpha-Tocopherol/analogs & derivatives , alpha-Tocopherol/chemical synthesis , Chromans/chemistry , Molecular Conformation , Oxidation-Reduction , Stereoisomerism , alpha-Tocopherol/chemistry
9.
Biochemistry ; 43(14): 4143-9, 2004 Apr 13.
Article in English | MEDLINE | ID: mdl-15065857

ABSTRACT

Tocopherol transfer protein (TTP) is a key regulator of vitamin E homeostasis. TTP is presumed to function by transporting the hydrophobic vitamin between cellular compartments, thus facilitating its secretion to the extracellular space. Indeed, recombinant TTP demonstrates marked ability to facilitate tocopherol transfer between lipid bilayers. We report the biochemical characterization of six missense mutations TTP(1) that are found in human AVED patients. We expressed the H101Q, A120T, R192H, R59W, E141K, and R221W TTP mutants in Escherichia coli, and purified the proteins to homogeneity. We then characterized TTP and its mutant counterparts with respect to their affinity for RRR-alpha-tocopherol and to their ability to catalyze tocopherol transfer between membranes. We observe the R59W, E141K, and R221W mutations, associated with the severe, early-onset version of AVED, are impaired in tocopherol binding and transfer activity. Surprisingly, despite the profound clinical effect of the R59W, E141K, and R221W mutations in vivo, their impact on TTP activity in vitro is quite benign (2-3-fold reduction in transfer kinetics). Furthermore, mutations associated with milder forms of the AVED disease, while causing pronounced perturbations in tocopherol homeostasis in vivo, are remarkably similar to the wild-type protein in the tocopherol transfer assays in vitro. Our data indicate that tocopherol transfer activity in vitro does not properly recapitulate the physiological functions of TTP. These findings suggest the possibility that the AVED syndrome may not arise from an inability of TTP to bind or to transfer alpha tocopherol, but rather from defects in other activities of the protein.


Subject(s)
Carrier Proteins/genetics , Vitamin E Deficiency/genetics , Vitamin E Deficiency/metabolism , alpha-Tocopherol/metabolism , Amino Acid Substitution/genetics , Ataxia/genetics , Ataxia/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Humans , Ligands , Mutagenesis, Site-Directed , Mutation, Missense , Protein Binding/genetics , Protein Conformation , Protein Transport/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , alpha-Tocopherol/chemistry
10.
Biochemistry ; 42(21): 6467-74, 2003 Jun 03.
Article in English | MEDLINE | ID: mdl-12767229

ABSTRACT

Intracellular trafficking of hydrophobic ligands is often mediated by specific binding proteins. The CRAL-TRIO motif is common to several lipid binding proteins including the cellular retinaldehyde binding protein (CRALBP), the alpha-tocopherol transfer protein (alpha-TTP), yeast phosphatidylinositol transfer protein (Sec14p), and supernatant protein factor (SPF). To examine the ligand specificity of these proteins, we measured their affinity toward a variety of hydrophobic ligands using a competitive [(3)H]-RRR-alpha-tocopherol binding assay. Alpha-TTP preferentially bound RRR-alpha-tocopherol over all other tocols assayed, exhibiting a K(d) of 25 nM. Binding affinities of other tocols for alphaTTP closely paralleled their ability to inhibit in vitro intermembrane transfer and their potency in biological assays. All other homologous proteins studied bound alpha-tocopherol but with pronouncedly weaker (> 10-fold) affinities than alpha-TTP. Sec14p demonstrated a K(d) of 373 nM for alpha-tocopherol, similar to that for its native ligand, phosphatidylinositol (381 nM). Human SPF had the highest affinity for phosphatidylinositol (216 nM) and gamma-tocopherol (268 nM) and significantly weaker affinity for alpha-tocopherol (K(d) 615 nM). SPF bound [(3)H]-squalene more weakly (879 nM) than the other ligands. Our data suggest that of all known CRAL-TRIO proteins, only alphaTTP is likely to serve as the physiological mediator of alpha-tocopherol's biological activity. Further, ligand promiscuity observed within this family suggests that caution should be exercised when suggesting protein function(s) from measurements utilizing a single ligand.


Subject(s)
Carrier Proteins/chemistry , Ligands , Membrane Proteins/chemistry , Phosphatidylinositols/chemistry , Protein Binding , Saccharomyces cerevisiae Proteins , Trans-Activators , Algorithms , Amino Acid Motifs , Amino Acid Sequence , Databases as Topic , Dose-Response Relationship, Drug , Humans , Kinetics , Lipids/chemistry , Lipoproteins/chemistry , Models, Molecular , Molecular Sequence Data , Mutation , Phospholipid Transfer Proteins , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid , Tritium/pharmacology , alpha-Tocopherol/chemistry , gamma-Tocopherol/chemistry
11.
Protein Expr Purif ; 24(3): 395-403, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11922755

ABSTRACT

alpha-Tocopherol transfer protein (alpha-TTP) is a cytosolic protein found predominantly in mammalian liver that is proposed to be responsible for the stereoselective uptake of alpha-tocopherol from the diet. Although recombinant alpha-TTP has been reported previously, little detail has been provided about the yields and competency of the recovered protein at binding tocopherols and other ligands. In this work, we report the successful expression and refolding of a recombinant human alpha-TTP. Ligation-independent cloning generated a construct in pET-30 encoding an alpha-TTP fusion protein (pET-30/ttp) containing a six-histidine tag and an S-tag, each cleavable by a separate protease upon expression in Escherichia coli. Overexpression of the protein led to the formation of inclusion bodies that were solubilized in 8 M urea and purified by metal chelate affinity chromatography. Another construct in pET-28b (pET-28b/ttp) provided a soluble protein product after expression that contained a 40-amino-acid N-terminal extension, which can be reduced to 21 amino acids by cleavage with thrombin. The success of different refolding experiments was assessed using a Lipidex gel-based tocopherol binding assay. The best recovery of refolded recombinant alpha-TTP fusion capable of binding alpha-tocopherol was provided by matrix-assisted refolding in the presence of 0.5 M arginine. Cleavage of the fusion protein with Factor Xa successfully generated the full-length wild-type protein with no additional N-terminal amino acids. The resulting purification scheme provides recombinant alpha-TTP in good yield and purity for investigation of both its structure and its binding affinities for different ligands including natural and synthetic tocols.


Subject(s)
Carrier Proteins , alpha-Tocopherol/metabolism , Carrier Proteins/biosynthesis , Carrier Proteins/chemistry , Carrier Proteins/genetics , Escherichia coli , Humans , Ligands , Protein Binding , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...