Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 30(11): 2582-2597, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38578281

ABSTRACT

PURPOSE: To explore the cellular cross-talk of tumor-resident mast cells (MC) in controlling the activity of cancer-associated fibroblasts (CAF) to overcome tumor microenvironment (TME) abnormalities, enhancing the efficacy of immune-checkpoint inhibitors in sarcoma. EXPERIMENTAL DESIGN: We used a coculture system followed by further validation in mouse models of fibrosarcoma and osteosarcoma with or without administration of the MC stabilizer and antihistamine ketotifen. To evaluate the contribution of ketotifen in sensitizing tumors to therapy, we performed combination studies with doxorubicin chemotherapy and anti-PD-L1 (B7-H1, clone 10F.9G2) treatment. We investigated the ability of ketotifen to modulate the TME in human sarcomas in the context of a repurposed phase II clinical trial. RESULTS: Inhibition of MC activation with ketotifen successfully suppressed CAF proliferation and stiffness of the extracellular matrix accompanied by an increase in vessel perfusion in fibrosarcoma and osteosarcoma as indicated by ultrasound shear wave elastography imaging. The improved tissue oxygenation increased the efficacy of chemoimmunotherapy, supported by enhanced T-cell infiltration and acquisition of tumor antigen-specific memory. Importantly, the effect of ketotifen in reducing tumor stiffness was further validated in sarcoma patients, highlighting its translational potential. CONCLUSIONS: Our study suggests the targeting of MCs with clinically administered drugs, such as antihistamines, as a promising approach to overcome resistance to immunotherapy in sarcomas.


Subject(s)
B7-H1 Antigen , Immune Checkpoint Inhibitors , Mast Cells , Tumor Microenvironment , Humans , Mice , Animals , Mast Cells/drug effects , Mast Cells/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Sarcoma/drug therapy , Sarcoma/pathology , Sarcoma/immunology , Ketotifen/pharmacology , Ketotifen/therapeutic use , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Xenograft Model Antitumor Assays , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Female , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/immunology
2.
Neoplasia ; 51: 100990, 2024 05.
Article in English | MEDLINE | ID: mdl-38520790

ABSTRACT

The lack of properly perfused blood vessels within tumors can significantly hinder the distribution of drugs, leading to reduced treatment effectiveness and having a negative impact on the quality of life of patients with cancer. This problem is particularly pronounced in desmoplastic cancers, where interactions between cancer cells, stromal cells, and the fibrotic matrix lead to tumor stiffness and the compression of most blood vessels within the tumor. To address this issue, two mechanotherapy approaches-mechanotherapeutics and ultrasound sonopermeation-have been employed separately to treat vascular abnormalities in tumors and have reached clinical trials. Here, we performed in vivo studies in sarcomas, to explore the conditions under which these two mechanotherapy strategies could be optimally combined to enhance perfusion and the efficacy of nano-immunotherapy. Our findings demonstrate that combination of the anti-histamine drug ketotifen, as a mechanotherapeutic, and sonopermeation effectively alleviates mechanical forces by decreasing 50 % collagen and hyaluronan levels and thus, reshaping the tumor microenvironment. Furthermore, the combined therapy normalizes the tumor vasculature by increasing two-fold the pericytes coverage. This combination not only improves six times tumor perfusion but also enhances drug delivery. As a result, blood vessel functionality is enhanced, leading to increased infiltration by 40 % of immune cells (CD4+ and CD8+ T-cells) and improving the antitumor efficacy of Doxil nanomedicine and anti-PD-1 immunotherapy. In conclusion, our research underscores the unique and synergistic potential of combining mechanotherapeutics and sonopermeation. Both approaches are undergoing clinical trials to enhance cancer therapy and have the potential to significantly improve nano-immunotherapy in sarcomas.


Subject(s)
CD8-Positive T-Lymphocytes , Sarcoma , Humans , Tumor Microenvironment , Quality of Life , Immunotherapy , Sarcoma/drug therapy
3.
ACS Nano ; 17(24): 24654-24667, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38054429

ABSTRACT

Ongoing research is actively exploring the use of immune checkpoint inhibitors to treat solid tumors by inhibiting the PD-1/PD-L1 axis and reactivating the function of cytotoxic T effector cells. Many types of solid tumors, however, are characterized by a dense and stiff stroma and are difficult to treat. Mechanotherapeutics have formed a recent class of drugs that aim to restore biomechanical abnormalities of the tumor microenvironment, related to increased stiffness and hypo-perfusion. Here, we have developed a polymeric formulation containing pirfenidone, which has been successful in restoring the tumor microenvironment in breast tumors and sarcomas. We found that the micellar formulation can induce similar mechanotherapeutic effects to mouse models of 4T1 and E0771 triple negative breast tumors and MCA205 fibrosarcoma tumors but with a dose 100-fold lower than that of the free pirfenidone. Importantly, a combination of pirfenidone-loaded micelles with immune checkpoint inhibition significantly delayed primary tumor growth, leading to a significant improvement in overall survival and in a complete cure for the E0771 tumor model. Furthermore, the combination treatment increased CD4+ and CD8+ T cell infiltration and suppressed myeloid-derived suppressor cells, creating favorable immunostimulatory conditions, which led to immunological memory. Ultrasound shear wave elastography (SWE) was able to monitor changes in tumor stiffness during treatment, suggesting optimal treatment conditions. Micellar encapsulation is a promising strategy for mechanotherapeutics, and imaging methods, such as SWE, can assist their clinical translation.


Subject(s)
Immunotherapy , Micelles , Mice , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Tumor Microenvironment
4.
Cancers (Basel) ; 15(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37509354

ABSTRACT

There is an imminent need for novel strategies for the diagnosis and treatment of aggressive triple-negative breast cancer (TNBC). Cell-targeted multifunctional nanomaterials hold great potential, as they can combine precise early-stage diagnosis with local therapeutic delivery to specific cell types. In this study, we used mesoporous silica (MS)-coated gold nanobipyramids (MS-AuNBPs) for fluorescence imaging in the near-infrared (NIR) biological window, along with targeted TNBC treatment. Our MS-AuNBPs, acting partly as light amplification components, allow considerable metal-enhanced fluorescence for a NIR dye conjugated to their surfaces compared to the free dye. Fluorescence analysis confirms a significant increase in the dye's modified quantum yield, indicating that MS-AuNBPs can considerably increase the brightness of low-quantum-yield NIR dyes. Meanwhile, we tested the chemotherapeutic efficacy of MS-AuNBPs in TNBC following the loading of doxorubicin within the MS pores and functionalization to target folate receptor alpha (FRα)-positive cells. We show that functionalized particles target FRα-positive cells with significant specificity and have a higher potency than free doxorubicin. Finally, we demonstrate that FRα-targeted particles induce stronger antitumor effects and prolong overall survival compared to the clinically applied non-targeted nanotherapy, Doxil. Together with their excellent biocompatibility measured in vitro, this study shows that MS-AuNBPs are promising tools to detect and treat TNBCs.

5.
Acta Biomater ; 167: 121-134, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37321529

ABSTRACT

Immunotherapy has revolutionized the treatment of dozens of cancers and became a standard of care for some tumor types. However, the majority of patients do not benefit from current immunotherapeutics and many develop severe toxicities. Therefore, the identification of biomarkers to classify patients as likely responders or non-responders to immunotherapy is a timely task. Here, we test ultrasound imaging markers of tumor stiffness and perfusion. Ultrasound imaging is non-invasive and clinically available and can be used both for stiffness and perfusion evaluation. In this study, we employed syngeneic orthotopic models of two breast cancers, a fibrosarcoma and a melanoma, to demonstrate that ultrasound-derived measures of tumor stiffness and perfusion (i.e., blood volume) correlate with the efficacy of immune checkpoint inhibition (ICI) in terms of changes in primary tumor volume. To modulate tumor stiffness and perfusion and thus, get a range of therapeutic outcomes, we employed the mechanotherapeutic tranilast. Mechanotherapeutics combined with ICI are advancing through clinical trials, but biomarkers of response have not been tested until now. We found the existence of linear correlations between tumor stiffness and perfusion imaging biomarkers as well as strong linear correlations between the stiffness and perfusion markers with ICI efficacy on primary tumor growth rates. Our findings set the basis for ultrasound biomarkers predictive of ICI therapy in combination with mechanotherapeutics. STATEMENT OF SIGNIFICANCE: Hypothesis: Monitoring Tumor Microenvironment (TME) mechanical abnormalities can predict the efficacy of immune checkpoint inhibition and provide biomarkers predictive of response. Tumor stiffening and solid stress elevation are hallmarks of tumor patho-physiology in desmoplastic tumors. They induce hypo-perfusion and hypoxia by compressing tumor vessels, posing major barriers to immunotherapy. Mechanotherapeutics is a new class of drugs that target the TME to reduce stiffness and improve perfusion and oxygenation. In this study, we show that measures of stiffness and perfusion derived from ultrasound shear wave elastography and contrast enhanced ultrasound can provide biomarkers of tumor response.


Subject(s)
Elasticity Imaging Techniques , Melanoma , Humans , Immune Checkpoint Inhibitors , Tumor Burden , Melanoma/therapy , Biomarkers , Immunotherapy/methods , Perfusion , Tumor Microenvironment
6.
J Control Release ; 353: 956-964, 2023 01.
Article in English | MEDLINE | ID: mdl-36516902

ABSTRACT

Nanocarrier-based chemo-immunotherapy has succeeded in clinical trials and understanding its effect on the tumor microenvironment could facilitate development of strategies to increase efficacy of these regimens further. NC-6300 (epirubicin micelle) demonstrates anti-tumor activity in sarcoma patients, but whether it is combinable with immune checkpoint inhibition is unclear. Here, we tested NC-6300 combined with anti-PD-L1 antibody in mouse models of osteosarcoma and fibrosarcoma. We found that sarcoma responds to NC-6300 in a dose-dependent manner, while anti-PD-L1 efficacy is potentiated even at a dose of NC-6300 less than 10% of the maximum tolerated dose. Furthermore, NC-6300 is more effective than the maximum tolerated dose of doxorubicin in increasing the tumor growth delay induced by anti-PD-L1 antibody. We investigated the mechanism of action of this combination. NC-6300 induces immunogenic cell death and its effect on the efficacy of anti-PD-L1 antibody is dependent on T cells. Also, NC-6300 normalized the tumor microenvironment (i.e., ameliorated pathophysiology towards normal phenotype) as evidenced through increased blood vessel maturity and reduced fibrosis. As a result, the combination with anti-PD-L1 antibody increased the intratumor density and proliferation of T cells. In conclusion, NC-6300 potentiates immune checkpoint inhibition in sarcoma, and normalization of the tumor microenvironment should be investigated when developing nanocarrier-based chemo-immunotherapy regimens.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Mice , Nanomedicine , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor
7.
Nat Commun ; 13(1): 7165, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418896

ABSTRACT

Nano-immunotherapy improves breast cancer outcomes but not all patients respond and none are cured. To improve efficacy, research focuses on drugs that reprogram cancer-associated fibroblasts (CAFs) to improve therapeutic delivery and immunostimulation. These drugs, however, have a narrow therapeutic window and cause adverse effects. Developing strategies that increase CAF-reprogramming while limiting adverse effects is urgent. Here, taking advantage of the CAF-reprogramming capabilities of tranilast, we developed tranilast-loaded micelles. Strikingly, a 100-fold reduced dose of tranilast-micelles induces superior reprogramming compared to free drug owing to enhanced intratumoral accumulation and cancer-associated fibroblast uptake. Combination of tranilast-micelles and epirubicin-micelles or Doxil with immunotherapy increases T-cell infiltration, resulting in cures and immunological memory in mice bearing immunotherapy-resistant breast cancer. Furthermore, shear wave elastography (SWE) is able to monitor reduced tumor stiffness caused by tranilast-micelles and predict response to nano-immunotherapy. Micellar encapsulation is a promising strategy for TME-reprogramming and SWE is a potential biomarker of response.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Neoplasms , Mice , Animals , Micelles , Tumor Microenvironment , Immunotherapy , ortho-Aminobenzoates/pharmacology , ortho-Aminobenzoates/therapeutic use , Immunologic Factors , Polymers
8.
Theranostics ; 12(14): 6106-6129, 2022.
Article in English | MEDLINE | ID: mdl-36168619

ABSTRACT

Sarcomas are uncommon malignancies of mesenchymal origin that can arise throughout the human lifespan, at any part of the body. Surgery remains the optimal treatment modality whilst response to conventional treatments, such as chemotherapy and radiation, is minimal. Immunotherapy has emerged as a novel approach to treat different cancer types but efficacy in soft tissue sarcoma and bone sarcoma is limited to distinct subtypes. Growing evidence shows that cancer-stroma cell interactions and their microenvironment play a key role in the effectiveness of immunotherapy. However, the pathophysiological and immunological properties of the sarcoma tumor microenvironment in relation to immunotherapy advances, has not been broadly reviewed. Here, we provide an up-to-date overview of the different immunotherapy modalities as potential treatments for sarcoma, identify barriers posed by the sarcoma microenvironment to immunotherapy, highlight their relevance for impeding effectiveness, and suggest mechanisms to overcome these barriers.


Subject(s)
Bone Neoplasms , Osteosarcoma , Sarcoma , Soft Tissue Neoplasms , Bone Neoplasms/therapy , Humans , Immunotherapy , Osteosarcoma/therapy , Sarcoma/drug therapy , Tumor Microenvironment
9.
J Control Release ; 345: 190-199, 2022 05.
Article in English | MEDLINE | ID: mdl-35271911

ABSTRACT

Nanomedicine offered hope for improving the treatment of cancer but the survival benefits of the clinically approved nanomedicines are modest in many cases when compared to conventional chemotherapy. Metronomic therapy, defined as the frequent, low dose administration of chemotherapeutics - is being tested in clinical trials as an alternative to the conventional maximum tolerated dose (MTD) chemotherapy schedule. Although metronomic chemotherapy has not been clinically approved yet, it has shown better survival than MTD in many preclinical studies. When beneficial, metronomic therapy seems to be associated with normalization of the tumor microenvironment including improvements in tumor perfusion, tissue oxygenation and drug delivery as well as activation of the immune system. Recent preclinical studies suggest that nanomedicines can cause similar changes in the tumor microenvironment. Here, by employing a mathematical framework, we show that both approaches can serve as normalization strategies to enhance treatment. Furthermore, employing murine breast and fibrosarcoma tumor models as well as ultrasound shear wave elastography and contrast-enhanced ultrasound, we provide evidence that the approved nanomedicine Doxil can induce normalization in a dose-dependent manner by improving tumor perfusion as a result of tissue softening. Finally, we show that pretreatment with a normalizing dose of Doxil can improve the efficacy of immune checkpoint inhibition.


Subject(s)
Nanomedicine , Neoplasms , Administration, Metronomic , Animals , Immunologic Factors/therapeutic use , Immunotherapy , Mice , Neoplasms/pathology , Tumor Microenvironment
10.
Front Oncol ; 12: 1069963, 2022.
Article in English | MEDLINE | ID: mdl-36686827

ABSTRACT

Sarcomas comprise a heterogenous group of malignancies, of more than 100 different entities, arising from mesenchymal tissue, and accounting for 1% of adult malignancies. Surgery, radiotherapy and systemic therapy constitute the therapeutic armamentarium against sarcomas, with surgical excision and conventional chemotherapy, remaining the mainstay of treatment for local and advanced disease, respectively. The prognosis for patients with metastatic disease is dismal and novel therapeutic approaches are urgently required to improve survival outcomes. Immunotherapy, is a rapidly evolving field in oncology, which has been successfully applied in multiple cancers to date. Immunomodulating antibodies, adoptive cellular therapy, cancer vaccines, and cytokines have been tested in patients with different types of sarcomas through clinical trials, pilot studies, retrospective and prospective studies. The results of these studies regarding the efficacy of different types of immunotherapies in sarcomas are conflicting, and the application of immunotherapy in daily clinical practice remains limited. Additional clinical studies are ongoing in an effort to delineate the role of immunotherapy in patients with specific sarcoma subtypes.

11.
Cancers (Basel) ; 13(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922795

ABSTRACT

The tumor microenvironment (TME) regulates essential tumor survival and promotion functions. Interactions between the cellular and structural components of the TME allow cancer cells to become invasive and disseminate from the primary site to distant locations, through a complex and multistep metastatic cascade. Tumor-associated M2-type macrophages have growth-promoting and immunosuppressive functions; mesenchymal cells mass produce exosomes that increase the migratory ability of cancer cells; cancer associated fibroblasts (CAFs) reorganize the surrounding matrix creating migration-guiding tracks for cancer cells. In addition, the tumor extracellular matrix (ECM) exerts determinant roles in disease progression and cancer cell migration and regulates therapeutic responses. The hypoxic conditions generated at the primary tumor force cancer cells to genetically and/or epigenetically adapt in order to survive and metastasize. In the circulation, cancer cells encounter platelets, immune cells, and cytokines in the blood microenvironment that facilitate their survival and transit. This review discusses the roles of different cellular and structural tumor components in regulating the metastatic process, targeting approaches using small molecule inhibitors, nanoparticles, manipulated exosomes, and miRNAs to inhibit tumor invasion as well as current and future strategies to remodel the TME and enhance treatment efficacy to block the detrimental process of metastasis.

12.
Adv Sci (Weinh) ; 8(3): 2001917, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33552852

ABSTRACT

Nano-immunotherapy regimens have high potential to improve patient outcomes, as already demonstrated in advanced triple negative breast cancer with nanoparticle albumin-bound paclitaxel and the immune checkpoint blocker (ICB) atezolizumab. This regimen, however, does not lead to cures with median survival lasting less than two years. Thus, understanding the mechanisms of resistance to and development of strategies to enhance nano-immunotherapy in breast cancer are urgently needed. Here, in human tissue it is shown that blood vessels in breast cancer lung metastases are compressed leading to hypoxia. This pathophysiology exists in murine spontaneous models of triple negative breast cancer lung metastases, along with low levels of perfusion. Because this pathophysiology is consistent with elevated levels of solid stress, the mechanotherapeutic tranilast, which decompressed lung metastasis vessels, is administered to mice bearing metastases, thereby restoring perfusion and alleviating hypoxia. As a result, the nanomedicine Doxil causes cytotoxic effects into metastases more efficiently, stimulating anti-tumor immunity. Indeed, when combining tranilast with Doxil and ICBs, synergistic effects on efficacy, with all mice cured in one of the two ICB-insensitive tumor models investigated is resulted. These results suggest that strategies to treat breast cancer with nano-immunotherapy should also include a mechanotherapeutic to decompress vessels.

13.
Development ; 147(11)2020 06 08.
Article in English | MEDLINE | ID: mdl-32513656

ABSTRACT

Systemic and stem cell niche-emanating cytokines and growth factors can promote regeneration, through mitosis. High mitosis, however, predisposes for all types of cancer and, thus, a trade-off exists between regeneration capacity and tissue homeostasis. Here, we study the role of tissue-intrinsic regenerative signaling in stem cell mitosis of adult Drosophila midgut of different genetic backgrounds. We provide evidence of two naturally occurring types of balance between mitosis and enterocyte nucleus growth: one based mostly on stem cell mitosis producing new cells and the other based mostly on the degree of young enterocyte nucleus size increase. Mitosis promotes intestinal host defense to infection, but predisposes for dysplasia in the form of stem cell-like clusters. Enterocyte nucleus growth also promotes host defense, without the drawback of promoting dysplasia. Through quantitative genetics, we identified eiger as an autocrine and paracrine inducer of stem cell mitosis. eiger expression in immature epithelial cells tilts the balance towards mitosis and dysplasia via a positive-feedback loop of highly mitotic stem cells sustaining more small nucleus enterocytes, which in turn supply more Eiger.


Subject(s)
Cell Nucleus/physiology , Drosophila/metabolism , Enterocytes/metabolism , Intestines/cytology , Mitosis , Stem Cells/metabolism , Animals , Animals, Genetically Modified/metabolism , Cyclin E/antagonists & inhibitors , Cyclin E/genetics , Cyclin E/metabolism , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Enterocytes/cytology , Gene Expression Regulation , Intestines/microbiology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Fluorescence , Pseudomonas aeruginosa/pathogenicity , RNA Interference , Stem Cells/cytology
14.
Theranostics ; 10(4): 1910-1922, 2020.
Article in English | MEDLINE | ID: mdl-32042344

ABSTRACT

Tumor normalization strategies aim to improve tumor blood vessel functionality (i.e., perfusion) by reducing the hyper-permeability of tumor vessels or restoring compressed vessels. Despite progress in strategies to normalize the tumor microenvironment (TME), their combinatorial antitumor effects with nanomedicine and immunotherapy remain unexplored. Methods: Here, we re-purposed the TGF-ß inhibitor tranilast, an approved anti-fibrotic and antihistamine drug, and combined it with Doxil nanomedicine to normalize the TME, increase perfusion and oxygenation, and enhance anti-tumor immunity. Specifically, we employed two triple-negative breast cancer (TNBC) mouse models to primarily evaluate the therapeutic and normalization effects of tranilast combined with doxorubicin and Doxil. We demonstrated the optimized normalization effects of tranilast combined with Doxil and extended our analysis to investigate the effect of TME normalization to the efficacy of immune checkpoint inhibitors. Results: Combination of tranilast with Doxil caused a pronounced reduction in extracellular matrix components and an increase in the intratumoral vessel diameter and pericyte coverage, indicators of TME normalization. These modifications resulted in a significant increase in tumor perfusion and oxygenation and enhanced treatment efficacy as indicated by the notable reduction in tumor size. Tranilast further normalized the immune TME by restoring the infiltration of T cells and increasing the fraction of T cells that migrate away from immunosuppressive cancer-associated fibroblasts. Furthermore, we found that combining tranilast with Doxil nanomedicine, significantly improved immunostimulatory M1 macrophage content in the tumorigenic tissue and improved the efficacy of the immune checkpoint blocking antibodies anti-PD-1/anti-CTLA-4. Conclusion: Combinatorial treatment of tranilast with Doxil optimizes TME normalization, improves immunostimulation and enhances the efficacy of immunotherapy.


Subject(s)
Immunotherapy/methods , Transforming Growth Factor beta/drug effects , Triple Negative Breast Neoplasms , Tumor Microenvironment/drug effects , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , CTLA-4 Antigen/drug effects , Chemotherapy, Cancer, Regional Perfusion/methods , Disease Models, Animal , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Doxorubicin/pharmacology , Drug Combinations , Extracellular Matrix/drug effects , Female , Immunization/methods , Mice , Nanomedicine/methods , Nanoparticles/therapeutic use , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacology , Programmed Cell Death 1 Receptor/drug effects , T-Lymphocytes/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , ortho-Aminobenzoates/administration & dosage , ortho-Aminobenzoates/pharmacology
15.
Sci Rep ; 10(1): 367, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941969

ABSTRACT

Ferrous core-shell nanoparticles consisting of a magnetic γ-Fe2O3 multi-nanoparticle core and an outer silica shell have been synthesized and covalently functionalized with Rhodamine B (RhB) fluorescent molecules (γ-Fe2O3/SiO2/RhB NPs). The resulting γ-Fe2O3/SiO2/RhB NPs were integrated with a renewable and naturally-abundant cellulose derivative (i.e. cellulose acetate, CA) that was processed in the form of electrospun fibers to yield multifunctional fluorescent fibrous nanocomposites. The encapsulation of the nanoparticles within the fibers and the covalent anchoring of the RhB fluorophore onto the nanoparticle surfaces prevented the fluorophore's leakage from the fibrous mat, enabling thus stable fluorescence-based operation of the developed materials. These materials were further evaluated as dual fluorescent sensors (i.e. ammonia gas and pH sensors), demonstrating consistent response for very high ammonia concentrations (up to 12000 ppm) and fast and linear response in both alkaline and acidic environments. The superparamagnetic nature of embedded nanoparticles provides means of electrospun fibers morphology control by magnetic field-assisted processes and additional means of electromagnetic-based manipulation making possible their use in a wide range of sensing applications.


Subject(s)
Cellulose/analogs & derivatives , Fluorescent Dyes , Molecular Probe Techniques , Nanoparticles , Rhodamines , Ammonia/analysis , Electromagnetic Phenomena , Hydrogen-Ion Concentration , Materials Testing , Microscopy, Fluorescence , Nanoparticles/chemistry , Nanoparticles/ultrastructure
16.
G3 (Bethesda) ; 9(11): 3877-3890, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31540975

ABSTRACT

Physiology, fitness and disease phenotypes are complex traits exhibiting continuous variation in natural populations. To understand complex trait gene functions transgenic lines of undefined genetic background are often combined to assess quantitative phenotypes ignoring the impact of genetic polymorphisms. Here, we used inbred wild-type strains of the Drosophila Genetics Reference Panel to assess the phenotypic variation of six physiological and fitness traits, namely, female fecundity, survival and intestinal mitosis upon oral infection, defecation rate and fecal pH upon oral infection, and terminal tracheal cell branching in hypoxia. We found continuous variation in the approximately 150 strains tested for each trait, with extreme values differing by more than four standard deviations for all traits. In addition, we assessed the effects of commonly used Drosophila UAS-RNAi transgenic strains and their backcrossed isogenized counterparts, in the same traits plus baseline intestinal mitosis and tracheal branching in normoxia, in heterozygous conditions, when only half of the genetic background was different among strains. We tested 20 non-isogenic strains (10 KK and 10 GD) from the Vienna Drosophila Resource Center and their isogenized counterparts without Gal4 induction. Survival upon infection and female fecundity exhibited differences in 50% and 40% of the tested isogenic vs. non-isogenic pairs, respectively, whereas all other traits were affected in only 10-25% of the cases. When 11 isogenic and their corresponding non-isogenic UAS-RNAi lines were expressed ubiquitously with Gal4, 4 isogenic vs. non-isogenic pairs exhibited differences in survival to infection. Furthermore, when a single UAS-RNAi line was crossed with the same Gal4 transgene inserted in different genetic backgrounds, the quantitative variations observed were unpredictable on the basis of pure line performance. Thus, irrespective of the trait of interest, the genetic background of commonly used transgenic strains needs to be considered carefully during experimentation.


Subject(s)
Animals, Genetically Modified , Drosophila melanogaster , Animals , Animals, Genetically Modified/anatomy & histology , Animals, Genetically Modified/genetics , Animals, Genetically Modified/microbiology , Animals, Genetically Modified/physiology , Defecation , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/genetics , Drosophila melanogaster/microbiology , Drosophila melanogaster/physiology , Feces/chemistry , Female , Fertility/genetics , Hydrogen-Ion Concentration , Intestines/microbiology , Intestines/physiology , Male , Mouth Diseases/genetics , Phenotype , Pseudomonas Infections/genetics , Pseudomonas Infections/veterinary , Regeneration , Trachea/anatomy & histology
17.
Oncotarget ; 10(41): 4224-4246, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31289620

ABSTRACT

Specific host genes and intestinal microbes, dysbiosis, aberrant immune responses and lifestyle may contribute to intestinal inflammation and cancer, but each of these parameters does not suffice to explain why sporadic colon cancer develops at an old age and only in some of the people with the same profile. To improve our understanding, longitudinal multi-omic and personalized studies will help to pinpoint combinations of host genetic, epigenetic, microbiota and lifestyle-shaped factors, such as blood factors and metabolites that change as we age. The intestinal holo'ome - defined as the combination of host and microbiota genomes, transcriptomes, proteomes, and metabolomes - may be imbalanced and shift to disease when the wrong host gene expression profile meets the wrong microbiota composition. These imbalances can be triggered by the dietary- or lifestyle-shaped intestinal environment. Accordingly, personalized human intestinal holo'omes will differ significantly among individuals and between two critical points in time: long before and upon the onset of disease. Detrimental combinations of factors could therefore be pinpointed computationally and validated using animal models, such as mice and flies. Finally, treatment strategies that break these harmful combinations could be tested in clinical trials. Herein we provide an overview of the literature and a roadmap to this end.

18.
ACS Nano ; 13(6): 6396-6408, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31187975

ABSTRACT

Dexamethasone is a glucocorticoid steroid with anti-inflammatory properties used to treat many diseases, including cancer, in which it helps manage various side effects of chemo-, radio-, and immunotherapies. Here, we investigate the tumor microenvironment (TME)-normalizing effects of dexamethasone in metastatic murine breast cancer (BC). Dexamethasone normalizes vessels and the extracellular matrix, thereby reducing interstitial fluid pressure, tissue stiffness, and solid stress. In turn, the penetration of 13 and 32 nm dextrans, which represent nanocarriers (NCs), is increased. A mechanistic model of fluid and macromolecule transport in tumors predicts that dexamethasone increases NC penetration by increasing interstitial hydraulic conductivity without significantly reducing the effective pore diameter of the vessel wall. Also, dexamethasone increases the tumor accumulation and efficacy of ∼30 nm polymeric micelles containing cisplatin (CDDP/m) against murine models of primary BC and spontaneous BC lung metastasis, which also feature a TME with abnormal mechanical properties. These results suggest that pretreatment with dexamethasone before NC administration could increase efficacy against primary tumors and metastases.


Subject(s)
Antineoplastic Agents/administration & dosage , Cisplatin/administration & dosage , Dexamethasone/pharmacology , Drug Carriers/chemistry , Mammary Neoplasms, Experimental/drug therapy , Nanoparticles/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Female , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Micelles , Neoplasm Metastasis , Tumor Microenvironment/drug effects
19.
Front Oncol ; 9: 32, 2019.
Article in English | MEDLINE | ID: mdl-30805303

ABSTRACT

Metastatic dissemination of cancer cells to distal organs is the major cause of death for patients suffering from the aggressive basal-like breast cancer (BLBC) subtype. Recently, we have shown that interleukin 13 receptor alpha 2 (IL13Rα2) is a critical gene that is overexpressed in a subset of BLBC primary tumors associated with poor distant metastasis-free survival (DMFS) and can promote extravasation and metastasis of breast cancer cells to the lungs. However, the upstream signaling mechanisms that promote aberrant IL13Rα2 expression during tumor progression remain unknown. Driven by our previously published gene expression microarray data derived from a well-characterized cell line model for BLBC progression, we show that both Inhibin ßA (INHBA) and IL13Rα2 genes exhibit similarly higher expression levels in metastatic compared to non-metastatic cells and that overexpression of both genes predicts worse metastasis-free survival of patients with high grade tumors. Activin A, a member of the TGFß superfamily comprising two INHBA subunits, has been shown to play context-depended roles in cancer progression. Here, we demonstrate that INHBA depletion downregulates IL13Rα2 expression in metastatic breast cancer cells, whereas treatment with Activin A in non-metastatic cells increases its expression levels. We also find that Activin A predominantly induces Smad2 phosphorylation and to a lesser extent activates Smad3 and Akt. Interestingly, we also show that Activin A-mediated upregulation of IL13Rα2 is Smad2-dependent since knocking down Smad2 or using the ALK4/ALK5 inhibitors EW-7197 and SB-505124 abolishes this effect. Most importantly, our data indicate that knocking down INHBA levels in breast cancer cells delays primary tumor growth, suppresses migration in vitro and inhibits the formation of lung metastases in vivo. Conclusively, our findings presented here suggest that the development of therapeutic interventions employing small molecule inhibitors against Activin receptors or neutralizing antibodies targeting Activin A ligand, could serve as alternative approaches against breast tumors overexpressing INHBA and/or IL13Rα2.

SELECTION OF CITATIONS
SEARCH DETAIL
...