Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Eur J Radiol ; 168: 111109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769532

ABSTRACT

PURPOSE: This study aimed to assess the image quality of apparent diffusion coefficient (ADC) maps derived from conventional diffusion-weighted MRI and fractional intracellular volume maps (FIC) from VERDICT MRI (Vascular, Extracellular, Restricted Diffusion for Cytometry in Tumours) in patients from the INNOVATE trial. The inter-reader agreement was also assessed. METHODS: Two readers analysed both ADC and FIC maps from 57 patients enrolled in the INNOVATE prospective trial. Image quality was assessed using the Prostate Imaging Quality (PI-QUAL) score and a subjective image quality Likert score (Likert-IQ). The image quality of FIC and ADC were compared using a Wilcoxon Signed Ranks test. The inter-reader agreement was assessed with Cohen's kappa. RESULTS: There was no statistically significant difference between the PI-QUAL score for FIC datasets compared to ADC datasets for either reader (p = 0.240 and p = 0.614). Using the Likert-IQ score, FIC image quality was higher compared to ADC (p = 0.021) as assessed by reader-1 but not for reader-2 (p = 0.663). The inter-reader agreement was 'fair' for PI-QUAL scoring of datasets with FIC maps at 0.27 (95% confidence interval; 0.08-0.46) and ADC datasets at 0.39 (95% confidence interval 0.22-0.57). For Likert scoring, the inter-reader agreement was also 'fair' for FIC maps at 0.38 (95% confidence interval; 0.10-0.65) and substantial for ADC maps at 0.62 (95% confidence interval; 0.39-0.86). CONCLUSION: Image quality was comparable for FIC and ADC. The inter-reader agreement was similar when using PIQUAL for both FIC and ADC datasets but higher for ADC maps compared to FIC maps using the image quality Likert score.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Artifacts , Prospective Studies , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Retrospective Studies
2.
Cancers (Basel) ; 15(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37173965

ABSTRACT

The aim of this work was to extend the VERDICT-MRI framework for modelling brain tumours, enabling comprehensive characterisation of both intra- and peritumoural areas with a particular focus on cellular and vascular features. Diffusion MRI data were acquired with multiple b-values (ranging from 50 to 3500 s/mm2), diffusion times, and echo times in 21 patients with brain tumours of different types and with a wide range of cellular and vascular features. We fitted a selection of diffusion models that resulted from the combination of different types of intracellular, extracellular, and vascular compartments to the signal. We compared the models using criteria for parsimony while aiming at good characterisation of all of the key histological brain tumour components. Finally, we evaluated the parameters of the best-performing model in the differentiation of tumour histotypes, using ADC (Apparent Diffusion Coefficient) as a clinical standard reference, and compared them to histopathology and relevant perfusion MRI metrics. The best-performing model for VERDICT in brain tumours was a three-compartment model accounting for anisotropically hindered and isotropically restricted diffusion and isotropic pseudo-diffusion. VERDICT metrics were compatible with the histological appearance of low-grade gliomas and metastases and reflected differences found by histopathology between multiple biopsy samples within tumours. The comparison between histotypes showed that both the intracellular and vascular fractions tended to be higher in tumours with high cellularity (glioblastoma and metastasis), and quantitative analysis showed a trend toward higher values of the intracellular fraction (fic) within the tumour core with increasing glioma grade. We also observed a trend towards a higher free water fraction in vasogenic oedemas around metastases compared to infiltrative oedemas around glioblastomas and WHO 3 gliomas as well as the periphery of low-grade gliomas. In conclusion, we developed and evaluated a multi-compartment diffusion MRI model for brain tumours based on the VERDICT framework, which showed agreement between non-invasive microstructural estimates and histology and encouraging trends for the differentiation of tumour types and sub-regions.

3.
Sci Rep ; 13(1): 2999, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810476

ABSTRACT

This work presents a biophysical model of diffusion and relaxation MRI for prostate called relaxation vascular, extracellular and restricted diffusion for cytometry in tumours (rVERDICT). The model includes compartment-specific relaxation effects providing T1/T2 estimates and microstructural parameters unbiased by relaxation properties of the tissue. 44 men with suspected prostate cancer (PCa) underwent multiparametric MRI (mp-MRI) and VERDICT-MRI followed by targeted biopsy. We estimate joint diffusion and relaxation prostate tissue parameters with rVERDICT using deep neural networks for fast fitting. We tested the feasibility of rVERDICT estimates for Gleason grade discrimination and compared with classic VERDICT and the apparent diffusion coefficient (ADC) from mp-MRI. The rVERDICT intracellular volume fraction fic discriminated between Gleason 3 + 3 and 3 + 4 (p = 0.003) and Gleason 3 + 4 and ≥ 4 + 3 (p = 0.040), outperforming classic VERDICT and the ADC from mp-MRI. To evaluate the relaxation estimates we compare against independent multi-TE acquisitions, showing that the rVERDICT T2 values are not significantly different from those estimated with the independent multi-TE acquisition (p > 0.05). Also, rVERDICT parameters exhibited high repeatability when rescanning five patients (R2 = 0.79-0.98; CV = 1-7%; ICC = 92-98%). The rVERDICT model allows for accurate, fast and repeatable estimation of diffusion and relaxation properties of PCa sensitive enough to discriminate Gleason grades 3 + 3, 3 + 4 and ≥ 4 + 3.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging , Prostate/pathology , Diffusion Magnetic Resonance Imaging , Neoplasm Grading
4.
Radiology ; 305(3): 623-630, 2022 12.
Article in English | MEDLINE | ID: mdl-35916679

ABSTRACT

Background In men suspected of having prostate cancer (PCa), up to 50% of men with positive multiparametric MRI (mpMRI) findings (Prostate Imaging Reporting and Data System [PI-RADS] or Likert score of 3 or higher) have no clinically significant (Gleason score ≤3+3, benign) biopsy findings. Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumor (VERDICT) MRI analysis could improve the stratification of positive mpMRI findings. Purpose To evaluate VERDICT MRI, mpMRI-derived apparent diffusion coefficient (ADC), and prostate-specific antigen density (PSAD) as determinants of clinically significant PCa (csPCa). Materials and Methods Between April 2016 and December 2019, men suspected of having PCa were prospectively recruited from two centers and underwent VERDICT MRI and mpMRI at one center before undergoing targeted biopsy. Biopsied lesion ADC, lesion-derived fractional intracellular volume (FIC), and PSAD were compared between men with csPCa and those without csPCa, using nonparametric tests subdivided by Likert scores. Area under the receiver operating characteristic curve (AUC) was calculated to test diagnostic performance. Results Among 303 biopsy-naive men, 165 study participants (mean age, 65 years ± 7 [SD]) underwent targeted biopsy; of these, 73 had csPCa. Median lesion FIC was higher in men with csPCa (FIC, 0.53) than in those without csPCa (FIC, 0.18) for Likert 3 (P = .002) and Likert 4 (0.60 vs 0.28, P < .001) lesions. Median lesion ADC was lower for Likert 4 lesions with csPCa (0.86 × 10-3 mm2/sec) compared with lesions without csPCa (1.12 × 10-3 mm2/sec, P = .03), but there was no evidence of a difference for Likert 3 lesions (0.97 × 10-3 mm2/sec vs 1.20 × 10-3 mm2/sec, P = .09). PSAD also showed no difference for Likert 3 (0.17 ng/mL2 vs 0.12 ng/mL2, P = .07) or Likert 4 (0.14 ng/mL2 vs 0.12 ng/mL2, P = .47) lesions. The diagnostic performance of FIC (AUC, 0.96; 95% CI: 0.93, 1.00) was higher (P = .02) than that of ADC (AUC, 0.85; 95% CI: 0.79, 0.91) and PSAD (AUC, 0.74; 95% CI: 0.66, 0.82) for the presence of csPCa in biopsied lesions. Conclusion Lesion fractional intracellular volume enabled better classification of clinically significant prostate cancer than did apparent diffusion coefficient and prostate-specific antigen density. Clinical trial registration no. NCT02689271 © RSNA, 2022 Online supplemental material is available for this article.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Aged , Humans , Male , Biopsy , Image-Guided Biopsy/methods , Magnetic Resonance Imaging/methods , Prostate/diagnostic imaging , Prostate/pathology , Prostate-Specific Antigen , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Retrospective Studies , Middle Aged
5.
Diagnostics (Basel) ; 12(7)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35885536

ABSTRACT

False positives on multiparametric MRIs (mp-MRIs) result in many unnecessary invasive biopsies in men with clinically insignificant diseases. This study investigated whether quantitative diffusion MRI could differentiate between false positives, true positives and normal tissue non-invasively. Thirty-eight patients underwent mp-MRI and Vascular, Extracellular and Restricted Diffusion for Cytometry in Tumors (VERDICT) MRI, followed by transperineal biopsy. The patients were categorized into two groups following biopsy: (1) significant cancer­true positive, 19 patients; (2) atrophy/inflammation/high-grade prostatic intraepithelial neoplasia (PIN)­false positive, 19 patients. The clinical apparent diffusion coefficient (ADC) values were obtained, and the intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI) and VERDICT models were fitted via deep learning. Significant differences (p < 0.05) between true positive and false positive lesions were found in ADC, IVIM perfusion fraction (f) and diffusivity (D), DKI diffusivity (DK) (p < 0.0001) and kurtosis (K) and VERDICT intracellular volume fraction (fIC), extracellular−extravascular volume fraction (fEES) and diffusivity (dEES) values. Significant differences between false positives and normal tissue were found for the VERDICT fIC (p = 0.004) and IVIM D. These results demonstrate that model-based diffusion MRI could reduce unnecessary biopsies occurring due to false positive prostate lesions and shows promising sensitivity to benign diseases.

6.
BMJ Open ; 12(4): e059847, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35396316

ABSTRACT

INTRODUCTION: Multiparametric MRI (mpMRI) is now widely used to risk stratify men with a suspicion of prostate cancer and identify suspicious regions for biopsy. However, the technique has modest specificity and a high false-positive rate, especially in men with mpMRI scored as indeterminate (3/5) or likely (4/5) to have clinically significant cancer (csPCa) (Gleason ≥3+4). Advanced MRI techniques have emerged which seek to improve this characterisation and could predict biopsy results non-invasively. Before these techniques are translated clinically, robust histological and clinical validation is required. METHODS AND ANALYSIS: This study aims to clinically validate two advanced MRI techniques in a prospectively recruited cohort of men suspected of prostate cancer. Histological analysis of men undergoing biopsy or prostatectomy will be used for biological validation of biomarkers derived from Vascular and Extracellular Restricted Diffusion for Cytometry in Tumours and Luminal Water imaging. In particular, prostatectomy specimens will be processed using three-dimension printed patient-specific moulds to allow for accurate MRI and histology mapping. The index tests will be compared with the histological reference standard to derive false positive rate and true positive rate for men with mpMRI scores which are indeterminate (3/5) or likely (4/5) to have clinically significant prostate cancer (csPCa). Histopathological validation from both biopsy and prostatectomy samples will provide the best ground truth in validating promising MRI techniques which could predict biopsy results and help avoid unnecessary biopsies in men suspected of prostate cancer. ETHICS AND DISSEMINATION: Ethical approval was granted by the London-Queen Square Research Ethics Committee (19/LO/1803) on 23 January 2020. Results from the study will be presented at conferences and submitted to peer-reviewed journals for publication. Results will also be available on ClinicalTrials.gov. TRIAL REGISTRATION NUMBER: NCT04792138.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Biomarkers , Humans , Image-Guided Biopsy , Magnetic Resonance Imaging , Male , Prospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
7.
Cancers (Basel) ; 13(8)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924255

ABSTRACT

Objectives: To assess the clinical outcomes of mpMRI before biopsy and evaluate the space remaining for novel biomarkers. Methods: The INNOVATE study was set up to evaluate the validity of novel fluidic biomarkers in men with suspected prostate cancer who undergo pre-biopsy mpMRI. We report the characteristics of this clinical cohort, the distribution of clinical serum biomarkers, PSA and PSA density (PSAD), and compare the mpMRI Likert scoring system to the Prostate Imaging-Reporting and Data System v2.1 (PI-RADS) in men undergoing biopsy. Results: 340 men underwent mpMRI to evaluate suspected prostate cancer. 193/340 (57%) men had subsequent MRI-targeted prostate biopsy. Clinically significant prostate cancer (csigPCa), i.e., overall Gleason ≥ 3 + 4 of any length OR maximum cancer core length (MCCL) ≥4 mm of any grade including any 3 + 3, was found in 96/195 (49%) of biopsied patients. Median PSA (and PSAD) was 4.7 (0.20), 8.0 (0.17), and 9.7 (0.31) ng/mL (ng/mL/mL) in mpMRI scored Likert 3,4,5 respectively for men with csigPCa on biopsy. The space for novel biomarkers was shown to be within the group of men with mpMRI scored Likert3 (178/340) and 4 (70/350), in whom an additional of 40% (70/178) men with mpMRI-scored Likert3, and 37% (26/70) Likert4 could have been spared biopsy. PSAD is already considered clinically in this cohort to risk stratify patients for biopsy, despite this 67% (55/82) of men with mpMRI-scored Likert3, and 55% (36/65) Likert4, who underwent prostate biopsy had a PSAD below a clinical threshold of 0.15 (or 0.12 for men aged <50 years). Different thresholds of PSA and PSAD were assessed in mpMRI-scored Likert4 to predict csigPCa on biopsy, to achieve false negative levels of ≤5% the proportion of patients whom who test as above the threshold were unsuitably high at 86 and 92% of patients for PSAD and PSA respectively. When PSA was re tested in a sub cohort of men repeated PSAD showed its poor reproducibility with 43% (41/95) of patients being reclassified. After PI-RADS rescoring of the biopsied lesions, 66% (54/82) of the Likert3 lesions received a different PI-RADS score. Conclusions: The addition of simple biochemical and radiological markers (Likert and PSAD) facilitate the streamlining of the mpMRI-diagnostic pathway for suspected prostate cancer but there remains scope for improvement, in the introduction of novel biomarkers for risk assessment in Likert3 and 4 patients, future application of novel biomarkers tested in a Likert cohort would also require re-optimization around Likert3/PI-RADS2, as well as reproducibility testing.

8.
Sci Rep ; 10(1): 9223, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32514049

ABSTRACT

Cancer cells differ in size from those of their host tissue and are known to change in size during the processes of cell death. A noninvasive method for monitoring cell size would be highly advantageous as a potential biomarker of malignancy and early therapeutic response. This need is particularly acute in brain tumours where biopsy is a highly invasive procedure. Here, diffusion MRI data were acquired in a GL261 glioma mouse model before and during treatment with Temozolomide. The biophysical model VERDICT (Vascular Extracellular and Restricted Diffusion for Cytometry in Tumours) was applied to the MRI data to quantify multi-compartmental parameters connected to the underlying tissue microstructure, which could potentially be useful clinical biomarkers. These parameters were compared to ADC and kurtosis diffusion models, and, measures from histology and optical projection tomography. MRI data was also acquired in patients to assess the feasibility of applying VERDICT in a range of different glioma subtypes. In the GL261 gliomas, cellular changes were detected according to the VERDICT model in advance of gross tumour volume changes as well as ADC and kurtosis models. VERDICT parameters in glioblastoma patients were most consistent with the GL261 mouse model, whilst displaying additional regions of localised tissue heterogeneity. The present VERDICT model was less appropriate for modelling more diffuse astrocytomas and oligodendrogliomas, but could be tuned to improve the representation of these tumour types. Biophysical modelling of the diffusion MRI signal permits monitoring of brain tumours without invasive intervention. VERDICT responds to microstructural changes induced by chemotherapy, is feasible within clinical scan times and could provide useful biomarkers of treatment response.


Subject(s)
Brain Neoplasms/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Glioma/diagnostic imaging , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Astrocytoma/diagnostic imaging , Astrocytoma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Female , Glioma/drug therapy , Glioma/pathology , Humans , Image Processing, Computer-Assisted , Mice , Mice, Inbred C57BL , Neoplasm Grading , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/pathology , Temozolomide/pharmacology , Temozolomide/therapeutic use , Transplantation, Heterologous , Tumor Burden/drug effects
9.
Radiology ; 291(2): 391-397, 2019 05.
Article in English | MEDLINE | ID: mdl-30938627

ABSTRACT

Background Biologic specificity of diffusion MRI in relation to prostate cancer aggressiveness may improve by examining separate components of the diffusion MRI signal. The Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumors (VERDICT) model estimates three distinct signal components and associates them to (a) intracellular water, (b) water in the extracellular extravascular space, and (c) water in the microvasculature. Purpose To evaluate the repeatability, image quality, and diagnostic utility of intracellular volume fraction (FIC) maps obtained with VERDICT prostate MRI and to compare those maps with apparent diffusion coefficient (ADC) maps for Gleason grade differentiation. Materials and Methods Seventy men (median age, 62.2 years; range, 49.5-82.0 years) suspected of having prostate cancer or undergoing active surveillance were recruited to a prospective study between April 2016 and October 2017. All men underwent multiparametric prostate and VERDICT MRI. Forty-two of the 70 men (median age, 67.7 years; range, 50.0-82.0 years) underwent two VERDICT MRI acquisitions to assess repeatability of FIC measurements obtained with VERDICT MRI. Repeatability was measured with use of intraclass correlation coefficients (ICCs). The image quality of FIC and ADC maps was independently evaluated by two board-certified radiologists. Forty-two men (median age, 64.8 years; range, 49.5-79.6 years) underwent targeted biopsy, which enabled comparison of FIC and ADC metrics in the differentiation between Gleason grades. Results VERDICT MRI FIC demonstrated ICCs of 0.87-0.95. There was no significant difference between image quality of ADC and FIC maps (score, 3.1 vs 3.3, respectively; P = .90). FIC was higher in lesions with a Gleason grade of at least 3+4 compared with benign and/or Gleason grade 3+3 lesions (mean, 0.49 ± 0.17 vs 0.31 ± 0.12, respectively; P = .002). The difference in ADC between these groups did not reach statistical significance (mean, 1.42 vs 1.16 × 10-3 mm2/sec; P = .26). Conclusion Fractional intracellular volume demonstrates high repeatability and image quality and enables better differentiation of a Gleason 4 component cancer from benign and/or Gleason 3+3 histology than apparent diffusion coefficient. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Sigmund and Rosenkrantz in this issue.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Neoplasm Grading/methods , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Prostate/pathology , Prostatic Neoplasms/pathology
10.
Magn Reson Med ; 82(1): 95-106, 2019 07.
Article in English | MEDLINE | ID: mdl-30883915

ABSTRACT

PURPOSE: A combined diffusion-relaxometry MR acquisition and analysis pipeline for in vivo human placenta, which allows for exploration of coupling between T2* and apparent diffusion coefficient (ADC) measurements in a sub 10-minute scan time. METHODS: We present a novel acquisition combining a diffusion prepared spin echo with subsequent gradient echoes. The placentas of 17 pregnant women were scanned in vivo, including both healthy controls and participants with various pregnancy complications. We estimate the joint T2* -ADC spectra using an inverse Laplace transform. RESULTS: T2* -ADC spectra demonstrate clear quantitative separation between normal and dysfunctional placentas. CONCLUSIONS: Combined T2* -diffusivity MRI is promising for assessing fetal and maternal health during pregnancy. The T2* -ADC spectrum potentially provides additional information on tissue microstructure, compared to measuring these two contrasts separately. The presented method is immediately applicable to the study of other organs.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Placenta Diseases/diagnostic imaging , Placenta/diagnostic imaging , Signal Processing, Computer-Assisted , Female , Fetal Growth Retardation/diagnostic imaging , Humans , Pre-Eclampsia/diagnostic imaging , Pregnancy
11.
NMR Biomed ; 32(5): e4073, 2019 05.
Article in English | MEDLINE | ID: mdl-30779863

ABSTRACT

The VERDICT framework for modelling diffusion MRI data aims to relate parameters from a biophysical model to histological features used for tumour grading in prostate cancer. Validation of the VERDICT model is necessary for clinical use. This study compared VERDICT parameters obtained ex vivo with histology in five specimens from radical prostatectomy. A patient-specific 3D-printed mould was used to investigate the effects of fixation on VERDICT parameters and to aid registration to histology. A rich diffusion data set was acquired in each ex vivo prostate before and after fixation. At both time points, data were best described by a two-compartment model: the model assumes that an anisotropic tensor compartment represents the extracellular space and a restricted sphere compartment models the intracellular space. The effect of fixation on model parameters associated with tissue microstructure was small. The patient-specific mould minimized tissue deformations and co-localized slices, so that rigid registration of MRI to histology images allowed region-based comparison with histology. The VERDICT estimate of the intracellular volume fraction corresponded to histological indicators of cellular fraction, including high values in tumour regions. The average sphere radius from VERDICT, representing the average cell size, was relatively uniform across samples. The primary diffusion direction from the extracellular compartment of the VERDICT model aligned with collagen fibre patterns in the stroma obtained by structure tensor analysis. This confirmed the biophysical relationship between ex vivo VERDICT parameters and tissue microstructure from histology.


Subject(s)
Magnetic Resonance Imaging , Prostate/diagnostic imaging , Tissue Fixation , Anisotropy , Cell Size , Humans , Male , Models, Biological
12.
NMR Biomed ; 32(1): e4019, 2019 01.
Article in English | MEDLINE | ID: mdl-30378195

ABSTRACT

VERDICT (vascular, extracellular and restricted diffusion for cytometry in tumours) estimates and maps microstructural features of cancerous tissue non-invasively using diffusion MRI. The main purpose of this study is to address the high computational time of microstructural model fitting for prostate diagnosis, while retaining utility in terms of tumour conspicuity and repeatability. In this work, we adapt the accelerated microstructure imaging via convex optimization (AMICO) framework to linearize the estimation of VERDICT parameters for the prostate gland. We compare the original non-linear fitting of VERDICT with the linear fitting, quantifying accuracy with synthetic data, and computational time and reliability (performance and precision) in eight patients. We also assess the repeatability (scan-rescan) of the parameters. Comparison of the original VERDICT fitting versus VERDICT-AMICO showed that the linearized fitting (1) is more accurate in simulation for a signal-to-noise ratio of 20 dB; (2) reduces the processing time by three orders of magnitude, from 6.55 seconds/voxel to 1.78 milliseconds/voxel; (3) estimates parameters more precisely; (4) produces similar parametric maps and (5) produces similar estimated parameters with a high Pearson correlation between implementations, r2  > 0.7. The VERDICT-AMICO estimates also show high levels of repeatability. Finally, we demonstrate that VERDICT-AMICO can estimate an extra diffusivity parameter without losing tumour conspicuity and retains the fitting advantages. VERDICT-AMICO provides microstructural maps for prostate cancer characterization in seconds.


Subject(s)
Algorithms , Prostate/diagnostic imaging , Prostate/pathology , Aged , Humans , Male , Middle Aged , Nonlinear Dynamics , Reproducibility of Results , Time Factors
13.
J Magn Reson Imaging ; 50(3): 910-917, 2019 09.
Article in English | MEDLINE | ID: mdl-30566264

ABSTRACT

BACKGROUND: Luminal water imaging (LWI) suffers less from imaging artifacts than the diffusion-weighted imaging used in multiparametric MRI of the prostate. LWI obtains multicompartment tissue information from a multiecho T2 dataset. PURPOSE: To compare a simplified LWI technique with apparent diffusion coefficient (ADC) in classifying lesions based on groupings of PI-RADS v2 scores. Secondary aims were to investigate whether LWI differentiates between histologically confirmed tumor and normal tissue as effectively as ADC, and whether LWI is correlated with the multicompartment parameters of the vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) diffusion model. STUDY TYPE: A subset of a larger prospective study. POPULATION: In all, 65 male patients aged 49-79 were scanned. FIELD STRENGTH/SEQUENCE: A 32-echo T2 and a six b-value diffusion sequence (0, 90, 500, 1500, 2000, 3000 s/mm2 ) at 3T. ASSESSMENT: Regions of interest were placed by a board-certified radiologist in areas of lesion and benign tissue and given PI-RADS v2 scores. STATISTICAL TESTS: Receiver operating characteristic and logistic regression analyses were performed. RESULTS: LWI classifies tissue as PI-RADS 1,2 or PI-RADS 3,4,5 with an area under curve (AUC) value of 0.779, compared with 0.764 for ADC. LWI differentiated histologically confirmed malignant from nonmalignant tissue with AUC, sensitivity, and specificity values of 0.81, 75%, and 87%, compared with 0.75, 83%, and 67% for ADC. The microstructural basis of the LWI technique is further suggested by the correspondence with the VERDICT diffusion-based microstructural imaging technique, with α, A1 , A2 , and LWF showing significant correlations. DATA CONCLUSION: LWI alone can predict PI-RADS v2 score groupings and detect histologically confirmed tumors with an ability similar to ADC alone without the limitations of diffusion-weighted MRI. This is important, given that ADC has an advantage in these tests as it already informs PI-RADS v2 scoring. LWI also provides multicompartment information that has an explicit biophysical interpretation, unlike ADC. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:910-917.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Aged , Humans , Male , Middle Aged , Prospective Studies , Prostate/diagnostic imaging
14.
Front Oncol ; 8: 26, 2018.
Article in English | MEDLINE | ID: mdl-29503808

ABSTRACT

PURPOSE: To examine the usefulness of rich diffusion protocols with high b-values and varying diffusion time for probing microstructure in bone metastases. Analysis techniques including biophysical and mathematical models were compared with the clinical apparent diffusion coefficient (ADC). METHODS: Four patients were scanned using 13 b-values up to 3,000 s/mm2 and diffusion times ranging 18-52 ms. Data were fitted to mono-exponential ADC, intravoxel incoherent motion (IVIM), Kurtosis and Vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) models. Parameters from the models were compared using correlation plots. RESULTS: ADC and IVIM did not fit the data well, failing to capture the signal at high b-values. The Kurtosis model best explained the data in many voxels, but in voxels exhibiting a more time-dependent signal, the VERDICT model explained the data best. The ADC correlated significantly (p < 0.004) with the intracellular diffusion coefficient (r = 0.48), intracellular volume fraction (r = -0.21), and perfusion fraction (r = 0.46) parameters from VERDICT, suggesting that these factors all contribute to ADC contrast. The mean kurtosis correlated with the intracellular volume fraction parameter (r = 0.26) from VERDICT, consistent with the hypothesis that kurtosis relates to cellularity, but also correlated weakly with the intracellular diffusion coefficient (r = 0.18) and cell radius (r = 0.16) parameters, suggesting that it may be difficult to attribute physical meaning to kurtosis. CONCLUSION: Both Kurtosis and VERDICT explained the diffusion signal better than ADC and IVIM, primarily due to poor fitting at high b-values in the latter two models. The Kurtosis and VERDICT models captured information at high b using parameters (Kurtosis or intracellular volume fraction and radius) that do not have a simple relationship with ADC and that may provide additional microstructural information in bone metastases.

15.
Magn Reson Med ; 80(2): 756-766, 2018 08.
Article in English | MEDLINE | ID: mdl-29230859

ABSTRACT

PURPOSE: To assess which microstructural models best explain the diffusion-weighted MRI signal in the human placenta. METHODS: The placentas of nine healthy pregnant subjects were scanned with a multishell, multidirectional diffusion protocol at 3T. A range of multicompartment biophysical models were fit to the data, and ranked using the Bayesian information criterion. RESULTS: Anisotropic extensions to the intravoxel incoherent motion model, which consider the effect of coherent orientation in both microvascular structure and tissue microstructure, consistently had the lowest Bayesian information criterion values. Model parameter maps and model selection results were consistent with the physiology of the placenta and surrounding tissue. CONCLUSION: Anisotropic intravoxel incoherent motion models explain the placental diffusion signal better than apparent diffusion coefficient, intravoxel incoherent motion, and diffusion tensor models, in information theoretic terms, when using this protocol. Future work will aim to determine if model-derived parameters are sensitive to placental pathologies associated with disorders, such as fetal growth restriction and early-onset pre-eclampsia. Magn Reson Med 80:756-766, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Microcirculation/physiology , Placenta/blood supply , Placenta/diagnostic imaging , Anisotropy , Bayes Theorem , Female , Humans , Pregnancy
16.
NMR Biomed ; 30(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28665041

ABSTRACT

The purpose of this study was to measure and model the diffusion time dependence of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) derived from conventional prostate diffusion-weighted imaging methods as used in recommended multiparametric MRI protocols. Diffusion tensor imaging (DTI) was performed at 9.4 T with three radical prostatectomy specimens, with diffusion times in the range 10-120 ms and b-values 0-3000 s/mm2 . ADC and FA were calculated from DTI measurements at b-values of 800 and 1600 s/mm2 . Independently, a two-component model (restricted isotropic plus Gaussian anisotropic) was used to synthesize DTI data, from which ADC and FA were predicted and compared with the measured values. Measured ADC and FA exhibited a diffusion time dependence, which was closely predicted by the two-component model. ADC decreased by about 0.10-0.15 µm2 /ms as diffusion time increased from 10 to 120 ms. FA increased with diffusion time at b-values of 800 and 1600 s/mm2 but was predicted to be independent of diffusion time at b = 3000 s/mm2 . Both ADC and FA exhibited diffusion time dependence that could be modeled as two unmixed water pools - one having isotropic restricted dynamics, and the other unrestricted anisotropic dynamics. These results highlight the importance of considering and reporting diffusion times in conventional ADC and FA calculations and protocol recommendations, and inform the development of improved diffusion methods for prostate cancer imaging.


Subject(s)
Anisotropy , Diffusion Magnetic Resonance Imaging/methods , Models, Biological , Prostate/anatomy & histology , Diffusion , Humans , Male , Middle Aged , Time Factors
17.
Front Oncol ; 7: 47, 2017.
Article in English | MEDLINE | ID: mdl-28393049

ABSTRACT

This article describes apparatus to aid histological validation of magnetic resonance imaging studies of the human prostate. The apparatus includes a 3D-printed patient-specific mold that facilitates aligned in vivo and ex vivo imaging, in situ tissue fixation, and tissue sectioning with minimal organ deformation. The mold and a dedicated container include MRI-visible landmarks to enable consistent tissue positioning and minimize image registration complexity. The inclusion of high spatial resolution ex vivo imaging aids in registration of in vivo MRI and histopathology data.

18.
NMR Biomed ; 30(2)2017 Feb.
Article in English | MEDLINE | ID: mdl-28000292

ABSTRACT

The diffusion signal in breast tissue has primarily been modelled using apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM) and diffusion tensor (DT) models, which may be too simplistic to describe the underlying tissue microstructure. Formalin-fixed breast cancer samples were scanned using a wide range of gradient strengths, durations, separations and orientations. A variety of one- and two-compartment models were tested to determine which best described the data. Models with restricted diffusion components and anisotropy were selected in most cancerous regions and there were no regions in which conventional ADC or DT models were selected. Maps of ADC generally related to cellularity on histology, but maps of parameters from more complex models suggest that both overall cell volume fraction and individual cell size can contribute to the diffusion signal, affecting the specificity of ADC to the tissue microstructure. The areas of coherence in diffusion anisotropy images were small, approximately 1 mm, but the orientation corresponded to stromal orientation patterns on histology.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Connective Tissue/diagnostic imaging , Connective Tissue/pathology , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , Models, Biological , Computer Simulation , Female , Humans , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity , Tumor Cells, Cultured
19.
BMC Cancer ; 16(1): 816, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27769214

ABSTRACT

BACKGROUND: Whilst multi-parametric magnetic resonance imaging (mp-MRI) has been a significant advance in the diagnosis of prostate cancer, scanning all patients with elevated prostate specific antigen (PSA) levels is considered too costly for widespread National Health Service (NHS) use, as the predictive value of PSA levels for significant disease is poor. Despite the fact that novel blood and urine tests are available which may predict aggressive disease better than PSA, they are not routinely employed due to a lack of clinical validity studies. Furthermore approximately 40 % of mp-MRI studies are reported as indeterminate, which can lead to repeat examinations or unnecessary biopsy with associated patient anxiety, discomfort, risk and additional costs. METHODS/DESIGN: We aim to clinically validate a panel of minimally invasive promising blood and urine biomarkers, to better select patients that will benefit from a multiparametric prostate MRI. We will then test whether the performance of the mp-MRI can be improved by the addition of an advanced diffusion-weighted MRI technique, which uses a biophysical model to characterise tissue microstructure called VERDICT; Vascular and Extracellular Restricted Diffusion for Cytometry in Tumours. INNOVATE is a prospective single centre cohort study in 365 patients. mp-MRI will act as the reference standard for the biomarker panel. A clinical outcome based reference standard based on biopsy, mp-MRI and follow-up will be used for VERDICT MRI. DISCUSSION: We expect the combined effect of biomarkers and VERDICT MRI will improve care by better detecting aggressive prostate cancer early and make mp-MRI before biopsy economically viable for universal NHS adoption. TRIAL REGISTRATION: INNOVATE is registered on ClinicalTrials.gov, with reference NCT02689271 .


Subject(s)
Biomarkers, Tumor , Clinical Protocols , Diffusion Magnetic Resonance Imaging , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/urine , Algorithms , Biopsy , Clinical Decision-Making , Diffusion Magnetic Resonance Imaging/methods , Humans , Male , Outcome Assessment, Health Care , Prognosis , Research Design , Workflow
20.
Diagnostics (Basel) ; 6(2)2016 May 27.
Article in English | MEDLINE | ID: mdl-27240408

ABSTRACT

Diffusion-weighted imaging (DWI) is the most effective component of the modern multi-parametric magnetic resonance imaging (mpMRI) scan for prostate pathology. DWI provides the strongest prediction of cancer volume, and the apparent diffusion coefficient (ADC) correlates moderately with Gleason grade. Notwithstanding the demonstrated cancer assessment value of DWI, the standard measurement and signal analysis methods are based on a model of water diffusion dynamics that is well known to be invalid in human tissue. This review describes the biophysical limitations of the DWI component of the current standard mpMRI protocol and the potential for significantly improved cancer assessment performance based on more sophisticated measurement and signal modeling techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...