Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 36882, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27830742

ABSTRACT

We present new mathematical and geological models to assist civil protection authorities in the mitigation of potential oil spill accidents in the Eastern Mediterranean Sea. Oil spill simulations for 19 existing offshore wells were carried out based on novel and high resolution bathymetric, meteorological, oceanographic, and geomorphological data. The simulations show a trend for east and northeast movement of oil spills into the Levantine Basin, affecting the coastal areas of Israel, Lebanon and Syria. Oil slicks will reach the coast in 1 to 20 days, driven by the action of the winds, currents and waves. By applying a qualitative analysis, seabed morphology is for the first time related to the direction of the oil slick expansion, as it is able to alter the movement of sea currents. Specifically, the direction of the major axis of the oil spills, in most of the cases examined, is oriented according to the prevailing azimuth of bathymetric features. This work suggests that oil spills in the Eastern Mediterranean Sea should be mitigated in the very few hours after their onset, and before wind and currents disperse them. We explain that protocols should be prioritized between neighboring countries to mitigate any oil spills.

2.
Environ Pollut ; 206: 390-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26253313

ABSTRACT

Oil spill models are combined with bathymetric, meteorological, oceanographic, and geomorphological data to model a series of oil spill accidents in the Eastern Mediterranean Sea. A total of 104 oil spill simulations, computed for 11 different locations in the Levantine Basin, show that oil slicks will reach the coast of Cyprus in four (4) to seven (7) days in summer conditions. Oil slick trajectories are controlled by prevailing winds and current eddies. Based on these results, we support the use of chemical dispersants in the very few hours after large accidental oil spills. As a corollary, we show shoreline susceptibility to vary depending on: a) differences in coastline morphology and exposure to wave action, b) the existence of uplifted wave-cut platforms, coastal lagoons and pools, and c) the presence of tourist and protected environmental areas. Mitigation work should take into account the relatively high susceptibility of parts of the Eastern Mediterranean.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Petroleum Pollution/analysis , Computer Simulation , Mediterranean Sea , Seasons
3.
IEEE Trans Image Process ; 20(8): 2276-87, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21324776

ABSTRACT

We propose a general purpose image segmentation framework, which involves feature extraction and classification in feature space, followed by flooding and merging in spatial domain. Region growing is based on the computed local measurements and distances from the distribution of features describing the different classes. Using the properties of the label dependent distances spatial coherence is ensured, since the image features are described globally. The distribution of the features for the different classes are obtained by block-wise unsupervised clustering based on the construction of the minimum spanning tree of the blocks' grid using the Mallows distance and the equipartition of the resulting tree. The final clustering is obtained by using the k-centroids algorithm. With high probability and under topological constraints, connected components of the maximum likelihood classification map are used to compute a map of initially labelled pixels. An efficient flooding algorithm is introduced, namely, Priority Multi-Class Flooding Algorithm (PMCFA), that assign pixels to labels using Bayesian dissimilarity criteria. A new region merging method, which incorporates boundary information, is introduced for obtaining the final segmentation map. Therefore, the merging stage is based on region features and edge localization. Segmentation results on the Berkeley benchmark data set demonstrate the effectiveness of the proposed methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...