Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 349: 126757, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35077811

ABSTRACT

Advances such as cell-on-cell immobilization, multi-stage fixed bed tower (MFBT) bioreactor, promotional effect on fermentation, extremely low temperature fermentation, freeze dried immobilized cells in two-layer fermentation, non-engineered cell factories, and those of recent papers are demonstrated. Studies for possible industrialization of ICB, considering production capacity, low temperatures fermentations, added value products and bulk chemical production are studied. Immobilized cell bioreactors (ICB) using cellulose nano-biotechnology and engineered cells are reported. The development of a novel ICB with recent advances on high added value products and conceptual research areas for industrialization of ICB is proposed. The isolation of engineered flocculant cells leads to a single tank ICB. The concept of cell factories without GMO is a new research area. The conceptual development of multi-stage fixed bed tower membrane (MFBTM) ICB is discussed. Finally, feasible process design and technoeconomic analysis of cellulose hydrolysis using ICB are studied for polyhydroxybutyrate (PHB) production.


Subject(s)
Cellulose , Industrial Development , Bioreactors , Cells, Immobilized/metabolism , Cellulose/metabolism , Cost-Benefit Analysis , Fermentation , Hydrolysis
2.
Bioresour Technol ; 345: 126464, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34864183

ABSTRACT

The aim of this study is the consolidated bioprocessing of lactose into lactic acid and ethanol using non-engineered Cell Factories (CFs). Therefore, two different types of composite biocatalysts (CF1-CF2) based on Saccharomyces cerevisiae with immobilized microorganism or enzyme on starch gel (SG) were prepared for 5% w/v lactose fermentation. In CF1, S. cerevisiae was covered with SG containing Lactobacillus casei, Lactobacillus bulgaricus, Kluyveromyces marxianus CF1a-c. S. cerevisiae/SG-ß-galactosidase (CF1d) was also used for simultaneous saccharification and fermentation (SSF) of lactose. In CF2, S. cerevisiae immobilized on tubular cellulose (TC) was covered with SG containing the aforementioned microorganisms (CF2a-c). The wet CF1d resulted in 96% of the theoretical ethanol yield while the wet CF1b and freeze-dried CF2b resulted in 89% of the theoretical lactic acid yield. The repeated batches using the CF2a-c exhibited better results than using CF1a-c. Subsequently, the freeze-dried CF2 as preservative and more manageable were verified for future exploitation of whey.


Subject(s)
Kluyveromyces , Lactose , Ethanol , Fermentation , Lactic Acid , Saccharomyces cerevisiae
3.
Enzyme Microb Technol ; 145: 109750, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33750540

ABSTRACT

The objective of this project was to ferment lactose and whey to ethanol in one-step process. Models of cell factory of non-engineered S.cerevisiae have been proposed to ferment lactose. The cell factory of non-engineered S. cerevisiae/SG-lactase was prepared by the addition, of a starch gel solution containing lactase on non-engineered S. cerevisiae, and freeze drying of it. The 2-layer non engineered S.cerevisiae-TC/SG-lactase factory was prepared by immobilizing S. cerevisiae on the internal layer of tubular cellulose (TC), and the lactase enzyme was contained in the upper layer of starch gel (SG) covering cells of S. cerevisiae. Using such cell factory for the fermentation of lactose, alcohol yield of 23-32 mL/L at lactose conversion of 71-100%. The improvement in alcohol yield by cell factory versus co-immobilization of lactase enzyme and S. cerevisiae on alginates, was found in the range of 28-78%. Likewise, the cell factories are more effective than engineered S. cerevisiae. The fermentation of whey instead of lactose resulted in a significant reduction of the fermentation time. Freeze-dried cell factories led to improved results as compared with non-freeze dried. When lactase was substituted with L. casei, ethanol and lactic acid were produced simultaneously at high concentrations, but in a much longer fermentation time. The cell factories can be considered as models for white biotechnology using lactose containing raw materials. This suggested cell factory model can be applied for other bioconversions using the appropriate enzymes and cells, in the frame of White Biotechnology without genetic modification.


Subject(s)
Lactose , Saccharomyces cerevisiae , Fermentation , Lactase/genetics , Saccharomyces cerevisiae/genetics , Whey
4.
Bioresour Technol ; 244(Pt 1): 629-634, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28810217

ABSTRACT

Enhanced single cell oil (SCO) production by the oleaginous yeast Lipomyces starkeyi DSM 70296, immobilised on delignified porous cellulose, is reported. Pure glucose media were initially used. The effects of substrate pH and treatment temperature were evaluated, showing that 30°C and pH 5.0 were the optimum conditions for SCO production by the immobilised yeast. The immobilisation technique led to increased lipid accumulation and cell growth by 44% and 8%, respectively, in the glucose media, compared to free cells in suspension. This positive effect was also shown when low concentration mixed agro-industrial waste suspensions were used as substrates, leading to 85% enhanced SCO production in comparison with free cells. Higher fatty acid (HFA) analysis showed that yeast immobilisation led to increased formation of unsaturated HFAs (6%) and reduced saturated HFAs (5%) compared to free cells.


Subject(s)
Cellulose , Saccharomyces cerevisiae/metabolism , Fatty Acids , Glucose , Lipomyces , Refuse Disposal
SELECTION OF CITATIONS
SEARCH DETAIL
...