Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Scanning ; 33(4): 201-7, 2011.
Article in English | MEDLINE | ID: mdl-21506135

ABSTRACT

In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In particular we use EFM to investigate the structures of diphenylalanine peptide tubes, particles, and CSGAITIG peptide particles placed on pre-fabricated SiO(2) surfaces with a backgate. We show that the cavity in the peptide tubes could be due to the presence of water residues. Additionally we show that self-assembled amyloid peptides form spherical solid structures containing the same self-assembled peptide in its interior. In both cases transmission electron microscopy is used to verify these structures. Further, the limitations of the EFM technique are discussed, especially when the observed structures become small compared with the radius of the AFM tip used. Finally, an agreement between the detected signal and the structure of the hollow peptide tubes is demonstrated.


Subject(s)
Microscopy, Atomic Force/methods , Nanotubes, Peptide/ultrastructure , Peptides/chemistry , Static Electricity , Adenoviridae/chemistry , Dipeptides , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanotubes, Peptide/chemistry , Phenylalanine/analogs & derivatives , Phenylalanine/chemistry , Propanols/chemistry , Silicon Dioxide/chemistry , Solutions/chemistry , Viral Proteins/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...