Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 23(1): 411, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667189

ABSTRACT

BACKGROUND: Cadmium (Cd) stress displays critical damage to the plant growth and health. Uptake and accumulation of Cd in plant tissues cause detrimental effects on crop productivity and ultimately impose threats to human beings. For this reason, a quite number of attempts have been made to buffer the adverse effects or to reduce the uptake of Cd. Of those strategies, the application of functionalized nanoparticles has lately attracted increasing attention. Former reports clearly noted that putrescine (Put) displayed promising effects on alleviating different stress conditions like Cd and similarly chitosan (CTS), as well as its nano form, demonstrated parallel properties in this regard besides acting as a carrier for many loads with different applications in the agriculture industry. Herein, we, for the first time, assayed the potential effects of nano-conjugate form of Put and CTS (CTS-Put NP) on grapevine (Vitis vinifera L.) cv. Sultana suffering from Cd stress. We hypothesized that their nano conjugate combination (CTS-Put NPs) could potentially enhance Put proficiency, above all at lower doses under stress conditions via CTS as a carrier for Put. In this regard, Put (50 mg L- 1), CTS (0.5%), Put 50 mg L- 1 + CTS 0.5%" and CTS-Put NPs (0.1 and 0.5%) were applied on grapevines under Cd-stress conditions (0 and 10 mg kg- 1). The interactive effects of CTS-Put NP were investigated through a series of physiological and biochemical assays. RESULTS: The findings of present study clearly revealed that CTS-Put NPs as optimal treatments alleviated adverse effects of Cd-stress condition by enhancing chlorophyll (chl) a, b, carotenoids, Fv/Fm, Y(II), proline, total phenolic compounds, anthocyanins, antioxidant enzymatic activities and decreasing Y (NO), leaf and root Cd content, EL, MDA and H2O2. CONCLUSIONS: In conclusion, CTS-Put NPs could be applied as a stress protection treatment on plants under diverse heavy metal toxicity conditions to promote plant health, potentially highlighting new avenues for sustainable crop production in the agricultural sector under the threat of climate change.


Subject(s)
Chitosan , Vitis , Humans , Cadmium/toxicity , Antioxidants , Chitosan/pharmacology , Putrescine/pharmacology , Anthocyanins , Hydrogen Peroxide , Chlorophyll A
2.
Plant Physiol Biochem ; 197: 107653, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36965321

ABSTRACT

Due to their sessile nature, plant cannot escape from stress factors in their growing environment, in either biotic or abiotic nature. Amid the abiotic stress factors; high levels of soil cadmium (Cd) impose heavy metal stress on plants, resulting in critical injuries and reduced agronomic performance. In order to buffer the adverse effects of Cd stress, novel nanoparticles (NP) have been applied and notable improvements have been reported. According to the literature, the protective roles of polyamines (e.g., Putrescine; Put) and carbon quantum dots (CQD) have been reported with respect to the plant productivity under either stress or non-stress conditions. Those reports led us to hypothesize that the conjugation of Put and CQD (Put-CQD NPs) might lead to further augmented performance of plants under stress and non-stress conditions. In this regard, we successfully synthesized a novel nanomaterial Put-CQD NPs. In this respect, Put (50 mg L-1), CQD (50 mg L-1) and Put-CQD NPs (25 and 50 mg L-1) were sprayed in 'Sultana' grapevines under Cd stress (10 mg kg-1). As expected, upon stress, Cd content in leaf and root tissues increased by 103.40% and 65.15%, respectively (p < 0.05). The high uptake and accumulation of Cd in plant tissues were manifested in significant alterations of physiological and biochemical attributes of the plant. Concerning stress markers, Cd stress caused increases in content of induced MDA, H2O2, and proline as well as electrolyte leakage rate. As expected, Cd stress caused critical reductions in fresh and dry leaf weight by 21.31% and 42.34%, respectively (p < 0.05). On the other hand, both Put-CQD NPs increased fresh and dry leaf weigh up to approximately 30%. The Cd-mediated disturbances in photosynthetic pigments and chlorophyll fluorescence were buffered with Put-CQD NPs. Of the defence system, enzymatic (SOD, APX, GP) as well as anthocyanin and phenolics were induced by both Cd stress and Put-CQD NPs (p < 0.05). On the other hand, Cd stress reduced content of polyamines (putrescine (Put), spermine (Spm) and spermidine (Spd) by 39.28%, 53.36%, and 39.26%, respectively (p < 0.05). However, the reduction levels were buffered by the treatments. Considering the effectiveness of both NP concentrations, the lower dose (25 mg L-1) could be considered as an optimal concentration. To our knowledge, this is the first report of its kind as a potential agent to reduce the adverse effects of Cd stress in grapevines.


Subject(s)
Quantum Dots , Vitis , Putrescine/pharmacology , Cadmium/toxicity , Cadmium/chemistry , Hydrogen Peroxide , Polyamines , Antioxidants/pharmacology
3.
Plant Physiol Biochem ; 196: 89-102, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36706695

ABSTRACT

Salt stress is of the most detrimental abiotic stress factors on either crop or non-crop species. Of the strategies employed to boost the performance of the plants against harmful impacts of salt stress; application of novel nano-engineered particles have recently gained great attention as a promising tool. Octa-aminopropyl polyhedral oligomeric silsesquioxanes nanoparticles (OA-POSS NPs) were synthesized and then a foliar-application of OA-POSS NPs were carried out on sweet basil plants subjected to the salt stress. In that context, interactive effects of OA-POSS NPs (25, 50 and 100 mg L-1) and salinity stress (50 and 100 mM NaCl) were assayed by estimating a series of agronomic, physiological, biochemical and analytical parameters. OA-POSS NPs decreased the harmful effects of salinity by increasing photosynthetic pigment content, adjusting chlorophyll fluorescence, and triggering non-enzymatic (phenolic content) and enzymatic antioxidant components. The findings suggested that 25 mg L-1 OA-POSS NPs is the optimum concentration for sweet basil grown under salt stress. Considering the essential oil profile, estragole was the predominant compound with a percentage higher than 50% depending on the treatment. In comparison to the control group, 50 mM NaCl did not significantly affect estragole content, whilst 100 mM NaCl caused a substantial increase in estragole content. Regarding OA-POSS NPs treatments, increments by 16.8%, 11.8% and 17.5% were observed following application with 25, 50 and 100 mg L-1, respectively. Taken together, the current study provides evidence that POSS NPs can be employed as novel, 'green' growth promoting agents in combating salt stress in sweet basil.


Subject(s)
Nanoparticles , Ocimum basilicum , Sodium Chloride/pharmacology , Salt Stress
4.
Int J Biol Macromol ; 224: 893-907, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36283550

ABSTRACT

High soil salinity represents a critical environmental constraint to crop production. In order to ameliorate the effects of salinity, a plethora of molecules have been applied and promising outcomes have been noted. The beneficial effects of chitosan (CTS) and melatonin (Mel) application, separately, have been previously recorded with respect to plant growth and productivity, leading to the hypothesis that their conjugation in the form of chitosan-melatonin nanoparticles (CTS-HPMC-Mel NPs) could lead to further enhanced performance of plants under control and stress conditions. In this regard, novel CTS-HPMC-Mel NPs were synthesized, characterized and then employed as a chemical priming agent in spearmint (Mentha spicata L.) plants 24 h prior to salinity stress imposition. As expected, salt stress negatively affected morphophysiological attributes such as plant height, leaf number, leaf fresh weight, leaf dry weight, photosynthetic pigments, Fv/Fo, and Fv/Fm. On the other hand, stress-related attributes, such as content of proline, MDA and H2O2, as well as activity of APX and GP enzymes were increased in response to salt stress. However, adverse effects of salt stress were ameliorated with Mel and CTS-HPMC-Mel NP treatments by enhancing morphological traits, proline, antioxidant enzymatic activities, as well as content of dominant constituents of essential oil profile. It is worth noting that conjugated form of Mel with chitosan, in comparison with solo treatment of Mel, was more effective in combating stress effects. To our knowledge, this is the first report to demonstrate that engineered CTS-HPMC-Mel NPs could be applied as an innovative protective agent to mitigate the effects of salinity in crop plants.


Subject(s)
Chitosan , Melatonin , Mentha spicata , Nanoparticles , Melatonin/pharmacology , Salinity , Hydrogen Peroxide , Antioxidants , Proline
5.
Polymers (Basel) ; 14(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36015606

ABSTRACT

Given the effects of salicylic acid (SA) on enhancing the phenolic compounds, flavonoids, and especially anthocyanins at higher doses in grapes as well as some toxic effects of SA at higher doses, the use of nano-carriers and nano-forms could assist SA in enhancing the accumulation of these compounds while reducing its toxic activity. Chitosan (CTS) has gained attention as a safe transporter and control releaser for a variety of chemicals, particularly in the agriculture industry. In this regard, the nano-form combination of SA and CTS (CTS-SA NPs) could boost the effectiveness of SA, particularly at lower dosages. Therefore, in the present study, SA (10, 20 mM), CTS (0.1%), and CTS-SA NPs (10, 20 mM) were applied on grape (Vitis vinifera L.) berries cv. Red Sultana at the pre-véraison stage to evaluate their actions on phenolic compounds, particularly anthocyanins. The CTS-SA NPs treatments provided the highest results in terms of the total phenolic compounds, flavonoids (10 mM), anthocyanins (in particular oenin, the main anthocyanin of red grapes) (10 and 20 mM), and PAL enzyme activity (20 mM). In conclusion, the CTS-SA NPs could be applied as a potential effective elicitor for phenolics, particularly anthocyanin enhancement of grape berries at pre- véraison stage with synergistic effects between SA and CTS in nano-forms predominantly at lower doses.

6.
Nanomaterials (Basel) ; 11(9)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34578605

ABSTRACT

The production and sustainability of grape berries with high quality and health-promoting properties is a major goal. In this regard, nano-engineered materials are being used for improving the quality and marketability of berries. In this study, we investigated the potential role of chitosan-phenylalanine nanocomposites (CS-Phe NCs) in improving the quality of Flame Seedless (Vitis vinifera L.) grape berries, such as titratable acidity (TA), pH, total soluble solids (TSS), ascorbic acid, total phenolics, total flavonoids, anthocyanin, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity, and phenylalanine ammonia-lyase (PAL) activity. In this context, grape berries collected in two growing seasons (2018-2019) were screened. Regarding the experimental design, the treatments included chitosan at a 0.5% concentration (CS 0.5%), phenylalanine at 5 mM and 10 mM concentrations (Phe 5 mM and Phe 10 mM), and chitosan-phenylalanine nanocomposites (CS-Phe NCs) at 5 mM and 10 mM concentrations. The lowest TA was recorded in grape berries treated with CS-Phe NCs with a 10 mM concentration. However, treatments enhanced with TSS, which reached the highest value with 10 mM of CS-Phe NCs, were reflected as the highest ratio of TSS/TA with 10 mM of CS-Phe NC treatment. Nanocomposites (NCs) also increased pH values in both study years compared to the control. Similarly, the ascorbic acid and total phenolic content increased in response to NP treatment, reaching the highest value with 5 mM and 10 mM of CS-Phe NCs in 2018 and 2019, respectively. The highest flavonoid content was observed with 5 mM of CS-Phe NCs in both study years. In addition, the anthocyanin content increased with 5 and 10 mM of CS-Phe NCs. PAL activity was found to be the highest with 5 mM of CS-Phe NCs in both study years. In addition, in accordance with the increase in PAL activity, increased total phenolics and anthocyanin, and higher DPPH radical scavenging activity of the grapes were recorded with the treatments compared to the control. As deduced from the findings, the coating substantially influenced the metabolic pathway, and the subsequent alterations induced by the treatments were notably appreciated due to there being no adverse impacts perceived.

7.
Plant Physiol Biochem ; 167: 257-268, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34391200

ABSTRACT

In view of damaging impacts of cadmium (Cd) toxicity on various vital processes of plants and strategies for alleviating these effects, selenium (Se) application has been recently achieved great attention. In addition, chitosan (CS) and its nano-form, besides many positive effects on plants, could be considered as an excellent adsorption matrix and a carrier for a wide range of materials like Se with various applications in agricultural sector. For that point, the combination nano-form of Se and CS (CS-Se NPs), using CS as a carrier and control releaser for Se, could enhance Se efficiency particularly at lower doses under stress conditions. Therefore, Se (10 mg L-1), CS (0.1%) and CS-Se NPs (in two concentrations; 5 and 10 mg L-1) were applied on Moldavian balm plant under 0, 2.5 and 5 mg kg-1 Cd-stress conditions. The results demonstrated that mostly Se and CS-Se NPs treatments could lessen negative effects of Cd-stress conditions through enhancing agronomic traits, photosynthetic pigments, chlorophyll fluorescence parameters and SPAD, proline, phenols, antioxidant enzymes activities and some dominant constituents of essential oils and decreasing MDA and H2O2. These encouraging impacts were more significant at lower dose of CS-Se NPs (5 mg L-1) introducing it as the best treatment to ameliorate Moldavian balm performance under Cd-stress conditions. In conclusion, CS-Se NPs could be considered as a supportive approach in plant production mainly under different heavy metal stressful conditions and probably a potential plant growth promoting and stress protecting agent with new outlooks for applying in agricultural sector.


Subject(s)
Chitosan , Nanoparticles , Oils, Volatile , Selenium , Antioxidants , Cadmium/toxicity , Hydrogen Peroxide , Photosynthesis , Selenium/pharmacology
8.
Ecotoxicol Environ Saf ; 220: 112402, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34090105

ABSTRACT

High levels of soil salinity can cause substantial decline in growth and productivity of crops worldwide, thus representing a major threat to global agriculture. In recent years, engineered nanoparticles (NPs) have been deemed as a promising alternative in combating abiotic stress factors, such as salinity. In this context, the present study was designed to explore the potential of cerium oxide nanoparticles (CeO2NPs) in alleviating salt stress in grapevine (Vitis vinifera L. cv. Flame Seedless) cuttings. Specifically, the interaction between CeO2 NPs (25, 50 and 100 mg L-1) and salinity (25 and 75 mM NaCl) was evaluated by assaying an array of agronomic, physiological, analytical and biochemical parameters. Treatments with CeO2 NPs, in general, alleviated the adverse impacts of salt stress (75 mM NaCl) significantly improving relevant agronomic traits of grapevine. CeO2 NPs significantly ameliorated chlorophyll damage under high levels of salinity. Furthermore, the presence of CeO2 NPs attenuated salinity-induced damages in grapevine as indicated by lower levels of proline, MDA and EL; however, H2O2 content was not ameliorated by the presence of CeO2 NPs under salt stress. Additionally, salinity caused substantial increases in enzymatic activities of GP, APX and SOD, compared with control plants. Similar to stress conditions, all concentrations of CeO2 NPs triggered APX activity, while the highest concentration of CeO2 NPs significantly increased GP activity. However, CeO2 NPs did not significantly modify SOD activity. Considering mineral nutrient profile, salinity increased Na and Cl content as well as Na/K ratio, while it decreased K, P and Ca contents. Nevertheless, the presence of CeO2 NPs did not lead to significant alterations in Na, K and P content of salt-stressed plants. Taken together, current findings suggest that CeO2 NPs could be employed as promising salt-stress alleviating agents in grapevine.


Subject(s)
Cerium/pharmacology , Nanoparticles , Salt Stress/drug effects , Vitis/drug effects , Antioxidants/metabolism , Cerium/chemistry , Chlorophyll/metabolism , Hydrogen Peroxide/metabolism , Nanoparticles/chemistry , Proline/metabolism , Salinity , Soil/chemistry , Vitis/metabolism
9.
Environ Sci Pollut Res Int ; 28(31): 42877-42890, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33829379

ABSTRACT

Salinity has destructive impacts in plant production; therefore, application of new approaches such as nanotechnology and plant priming is attracting increasing attention as an innovative means to ameliorate salt stress effects. Considering the unique properties and recorded beneficial influence of carbon quantum dots (CQDs) and proline in plant growth and physiological parameters when applied individually, their conjugation in the form of carbon quantum dot nanoparticles functionalized by proline (Pro-CQDs NPs) could lead to synergistic effects. Accordingly, an experiment was conducted to evaluate the impact of this advanced nanomaterial (Pro-CQDs NPs) as a chemical priming agent, in grapevine plants cv. 'Rasha'. For this purpose, proline, CQDs, and Pro-CQDs NPs at three concentrations (0, 50, and 100 mg L-1) were applied exogenously 48 h prior to salinity stress (0 and 100 mM NaCl) that was imposed for a month. Three days after imposing salt stress, an array of biochemical measurements was recorded, while agronomic and some physiological parameters were noted at the end of the stress period. Results revealed that proline treatment at both concentrations, as well as CQDs and Pro-CQDs NPs at low concentration, positively affected grapevine plants under both non-stress and stress conditions. Specifically, the application of proline at 100 mg L-1 and Pro-CQDs NPs at 50 mg L-1 resulted in optimal performance identifying 50 mg L-1 Pro-CQDs NPs as the optimal treatment. Proline treatment at 100 mg L-1 increased leaf fresh weight (FW) and dry weight (DW); chl a, b, and proline content; SOD activity under both non-stress and stress conditions; Y (II) under salinity and carotenoid content; and CAT activity under control conditions. Pro-CQDs NP treatment at 50 mg L-1 enhanced total phenol, anthocyanin, and Fv/Fo, as well as APX and GP activities under both conditions, while increasing carotenoid, Y (II), Fv/Fo, and CAT activity under salinity. Furthermore, it decreased MDA and H2O2 contents at both conditions and EL and Y (NO) under salt stress. Overall, conjugation of CQDs with proline at 50 mg L-1 resulted in further improving the protective effect of proline application at 100 mg L-1. Therefore, functionalization of NPs with chemical priming agents appears to be an effective means of optimizing plant-priming approaches towards efficient amelioration of abiotic stress-related damage in plants.


Subject(s)
Quantum Dots , Antioxidants , Carbon , Hydrogen Peroxide , Proline , Salinity , Salt Stress , Stress, Physiological
10.
Plants (Basel) ; 10(2)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573207

ABSTRACT

Salinity constitutes one of the most important causes leading to severe reduction in plant yield. Several reports correlate the accumulation of polyamines in plants with tolerance to abiotic stress cues. The present study examined three Medicago truncatula genotypes with differing sensitivities to salinity (TN1.11, tolerant; Jemalong A17, moderately sensitive; TN6.18, sensitive), with the aim of examining the genotype-specific involvement of the polyamine metabolic pathway in plant response to salinity. The study was carried out with leaves harvested 48 h after watering plants with 200 mM NaCl. A comprehensive profile of free polyamines was determined using high performance liquid chromatography. All genotypes showed spermidine and spermine as the most abundant polyamines under control conditions. In salinity conditions, spermine levels increased at the expense of putrescine and spermidine, indicating a drift of polyamine metabolism towards the synthesis of increasing polycationic forms as a stress response. The increasing balance between high and low polycationic forms was clearly diminished in the salt-sensitive genotype TN6.18, showing a clear correlation with its sensitive phenotype. The polyamine metabolic profile was then supported by molecular evidence through the examination of polyamine metabolism transcript levels by RT-qPCR. General suppression of genes that are involved upstream in the PA biosynthetic pathway was determined. Contrarily, an induction in the expression of genes involved in the biosynthesis of spermine and spermidine was observed, in agreement with the metabolic analysis. A significant induction in diamino oxidase expression, involved in the catabolism of putrescine, was specifically found in the sensitive genotype ΤΝ6.18, indicating a distinct metabolic response to stress. Present findings highlight the involvement of polyamines in the defense response of Medicago genotypes showing sensitivity to salt stress.

11.
BMC Plant Biol ; 21(1): 120, 2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33639848

ABSTRACT

BACKGROUND: Salinity is an important global problem with destructive impacts on plants leading to different biochemical and metabolic changes in plants through induced oxidative stress that disturbs metabolism, growth, performance and productivity of plants. Given that putrescine (Put) and carbon quantum dots (CQDs), individually, have promising effects in different plant processes, the idea of their combination in a nano-structure "Put-CQD" lead to its synthesis to evaluate the potential exertion of synergistic effects. The current study aimed to investigate the application of newly-synthesized nanoparticles (NPs) consisting of CQDs and Put in grapevine (Vitis vinifera cv. 'Sultana') under salinity stress conditions. For this purpose, Put, CQDs and Put-CQD NPs at 5 and 10 mg L- 1 concentrations were applied as chemical priming agents in 'Sultana' grapevine 48 h prior salinity stress imposition (0 and 100 mM NaCl). RESULTS: Salinity significantly decreased (P ≤ 0.05) morphological parameters, photosynthetic pigments, chlorophyll fluorescence parameters and membrane stability index. In addition, salinity enhanced MDA, H2O2, proline content and antioxidant enzyme activity. Results revealed that Put-CQD NPs, particularly at 10 mg L- 1 concentration, alleviated the destructive impacts of salinity stress by improving leaf fresh and dry weights, K+ content, photosynthetic pigments, chlorophyll fluorescence and SPAD parameters, proline content, total phenolics and antioxidant enzymatic activities (CAT, APX, GP and SOD), while decreasing Na+ content, EL, MDA and H2O2 levels. CONCLUSION: To conclude, Put-CQD NPs represent an innovative priming treatment that could be effectively applied on grapevine to improve plant performance under salinity stress conditions.


Subject(s)
Nanoparticles , Putrescine/pharmacology , Quantum Dots , Salt Stress , Vitis/drug effects , Vitis/growth & development , Antioxidants/metabolism , Drug Synergism , Phenols/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology , Proline/metabolism , Vitis/metabolism
12.
Plants (Basel) ; 9(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899661

ABSTRACT

Polysaccharide-based edible coatings are served as an attractive preservation method for postharvest maintenance of most fruits. The current study examined the effect of carboxymethylcellulose (CMC)- and pectin (Pec)- based edible coatings on titratable acidity (TA), firmness; vitamin C (vit C); total soluble solids (TSS); pH; total phenolics; anthocyanin and flavonoid contents; total antioxidant capacity (based on 1,1-Diphenyl-2-picryl-hydrazyl hydrate (DPPH)); the activities of peroxidase (POD), polyphenol oxidase (PPO) and polygalacturonase (PG) enzymes; and weight loss during cold storage. The results showed that each coating and their combinations caused positive effects in all measured parameters except weight loss. The applied coatings preserved firmness and improved total phenols, anthocyanin and flavonoid contents, antioxidant capacity and POD activity. In addition, TSS decreased and pH values remained more or less stable with the coating application. The coatings delayed TA and vitamin C loss, and decreased enzymatic activities such as PPO and PG. It could be stated that CMC at 1% and Pec at 1.5% separately demonstrated the best results for most of the measured parameters; and 0.5% Pec + 1.5% CMC could be considered as the best combination. In conclusion, application of CMC, Pec, or their combinations would be considered as an interesting approach to improve postharvest quality characteristics of plum fruit.

13.
Food Sci Technol Int ; 26(7): 583-592, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32279572

ABSTRACT

Exploiting safer methods for fruit preservation such as application of edible coatings can improve shelf life, valuable characteristics, and antioxidative capacity. The current study aimed to investigate the effect of a pectin-based edible coating on antioxidative capacity of plum fruit during shelf life (19 ± 2 ℃ and 65% relative humidity for eight days). To do this, three solutions (0.5, 1, and 1.5%) of pectin, plasticized by glycerol (0.3% w/v), were applied on plum fruit and compared to a control treated with only distilled water. Ascorbic acid, total phenolics, anthocyanin and flavonoid contents, total antioxidative capacity based on 1,1-diphenyl-2-picryl-hydrazyl hydrate method, peroxidase (as an antioxidant enzyme), and polyphenol oxidase (as an oxidant enzyme) activities were recorded during this period. The results demonstrated that pectin-based edible coating was significantly effective on maintaining ascorbic acid, anthocyanin and flavonoid contents, and antioxidative capacity in plum fruits (P ≤ 0.01). The activities of enzymes were significantly affected by the coatings; peroxidase activity increased and polyphenol oxidase activity decreased (P ≤ 0.01). All pectin concentrations significantly caused higher ascorbic acid and anthocyanin contents, antioxidative capacity, and peroxidase activity but a lower polyphenol oxidase activity than the control; however, just 1 and 1.5% concentrations were effective in terms of total phenolic compounds and flavonoid content, respectively, and the other concentrations acted the same as the control. In general, the coating constituted from 1.5% pectin showed the best results for most measured parameters. Considering the influences of pectin-based edible coating on antioxidative characteristics of plum fruits, its application can be potentially regarded as a favorable method to enhance nutritional value of fruits.


Subject(s)
Edible Films , Food Preservation , Fruit , Pectins , Prunus domestica , Antioxidants/analysis , Edible Films/standards , Food Preservation/methods , Fruit/chemistry , Pectins/chemistry , Prunus domestica/chemistry
14.
Chemosphere ; 249: 126171, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32087452

ABSTRACT

Carbon-based materials including multiwall carbon nanotubes (MWCNTs) have been recently implicated in a number of reports dealing with their potential use in agriculture, leading to contradictory findings. In this study, MWCNTs were successfully functionalized with carboxylic acid groups (MWCNTs-COOH) in order to increase water dispersion. Hydroponically cultured sweet basil (Ocimum basilicum L.) seedlings were subjected to four concentrations (0, 25, 50 and 100 mg L-1) of MWCNTs-COOH under three salt stress levels (0, 50 and 100 mM NaCl). An array of agronomic, physiological, analytical and biochemical parameters were evaluated in an attempt to examine the potential use of MWCNTs in plants under optimal and abiotic stress conditions. Application of MWCNTs-COOH at optimum concentration (50 mg L-1) could ameliorate the negative effects of salinity stress by increasing chlorophyll and carotenoids content and inducing non-enzymatic (i.e. phenolic content) and enzymatic antioxidant components (i.e. ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (GP) activity). Furthermore, MWCNTs-COOH treatments under optimal conditions induced plant growth, while a significant increase (P ≤ 0.01) was recorded in essential oil content and compound profile. On the other hand, biochemical and epifluorescence microscopy evidence suggested that high dosage (100 mg L-1) of MWCNTs-COOH leads to toxicity effects in plant tissue. Overall, the positive response of plants to low concentrations of MWCNTs-COOH under control and abiotic stress conditions renders them as potential novel plant growth promoting and stress protecting agents, opening up new perspectives for their use in agriculture.


Subject(s)
Nanotubes, Carbon/toxicity , Ocimum basilicum/physiology , Antioxidants/metabolism , Ascorbate Peroxidases , Carboxylic Acids/chemistry , Carotenoids , Catalase , Chlorophyll , Nanotubes, Carbon/chemistry , Ocimum basilicum/drug effects , Oils, Volatile/metabolism , Phenols/metabolism , Plant Development , Seedlings/drug effects , Stress, Physiological
15.
Sci Rep ; 10(1): 912, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31969653

ABSTRACT

Considering titanium dioxide nanoparticles (TiO2 NPs) role in plant growth and especially in plant tolerance against abiotic stress, a greenhouse experiment was carried out to evaluate TiO2 NPs effects (0, 50, 100 and 200 mg L-1) on agronomic traits of Moldavian balm (Dracocephalum moldavica L.) plants grown under different salinity levels (0, 50 and 100 mM NaCl). Results demonstrated that all agronomic traits were negatively affected under all salinity levels but application of 100 mg L-1 TiO2 NPs mitigated these negative effects. TiO2 NPs application on Moldavian balm grown under salt stress conditions improved all agronomic traits and increased antioxidant enzyme activity compared with plants grown under salinity without TiO2 NP treatment. The application of TiO2 NPs significantly lowered H2O2 concentration. In addition, highest essential oil content (1.19%) was obtained in 100 mg L-1 TiO2 NP-treated plants under control conditions. Comprehensive GC/MS analysis of essential oils showed that geranial, z-citral, geranyl acetate and geraniol were the dominant essential oil components. The highest amounts for geranial, geraniol and z-citral were obtained in 100 mg L-1 TiO2 NP-treated plants under control conditions. In conclusion, application of 100 mg L-1 TiO2 NPs could significantly ameliorate the salinity effects in Moldavian balm.


Subject(s)
Lamiaceae/chemistry , Lamiaceae/genetics , Nanoparticles , Oils, Volatile/analysis , Oils, Volatile/metabolism , Salt Stress/drug effects , Titanium/pharmacology , Acetates/analysis , Acetates/metabolism , Acyclic Monoterpenes/analysis , Acyclic Monoterpenes/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Lamiaceae/metabolism , Salinity
16.
Physiol Plant ; 168(2): 361-373, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31433490

ABSTRACT

Sodium nitroprusside (SNP) and hydrogen peroxide (H2 O2 ), as priming agents, have the well-recorded property to increase plant tolerance against a range of different abiotic stresses such as salinity. In this regard, the present study was conducted to evaluate the effect of different levels of SNP (100 and 200 µM) and H2 O2 (2.5 and 5 mM) as well as their combinations under salt stress (0 and 50 mM NaCl) on key physiological and biochemical attributes of the economically important aromatic plant basil (Ocimum basilicum L.) grown under hydroponic culture. Results revealed that morphological parameters such as plant height, root length, leaf fresh and dry weights (FW and DW) were significantly decreased by salinity stress, while SNP and H2 O2 treatments, alone or combined, increased FW and DW thus enhancing plant tolerance to salt stress. Furthermore, 200 µM SNP + 2.5 mM H2 O2 appeared to be the most effective treatment by causing significant increase in chlorophyll a and b, anthocyanin content and guaiacol peroxidase and ascorbate peroxidase enzymes activities under saline condition. In addition, analytical measurements showed that essential oil profile (concentration of main components) under salt stress was mostly affected by SNP and H2 O2 treatments. The highest increase was observed for methyl chavicol (43.09-69.91%), linalool (4.8-17.9%), cadinol (1.5-3.2%) and epi-α-cadinol (0.18-10.75%) compounds. In conclusion, current findings demonstrated a positive crosstalk between SNP and H2 O2 toward improved basil plant tolerance to salt stress, linked with regulation of essential oil composition.


Subject(s)
Hydrogen Peroxide/pharmacology , Nitroprusside/pharmacology , Ocimum basilicum/physiology , Salt Stress , Ocimum basilicum/drug effects , Oils, Volatile/chemistry , Plant Oils/chemistry , Salinity
17.
J Sci Food Agric ; 99(13): 5946-5952, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31206683

ABSTRACT

BACKGROUND: Grape berries produce significant amounts of phenolic compounds. These are an essential qualitative factor due to their nutritional value and effect on berry color and texture. Salicylic acid (SA) and its derivatives usually lead to enhancement of phenolic content in plant tissues. The present study was conducted to evaluate the effect of different levels of SA (0.0, 50.0, 100.0, and 200.0 mM) on the production of phenolic compounds and the derivatives (anthocyanin and flavonoid) in the grape berries, with emphasis on malvidin-3-O-ß glucoside as a regular anthocyanin in red grapes. RESULT: The results showed that total phenolics content were significantly enhanced in SA-treated (100.0 and 200.0 mM) berries compared to untreated ones. Salicylic acid treatment at all concentrations considerably improved the anthocyanin content in the berries and, compared with untreated berries, the accumulation of malvidin-3-O-ß glucoside was higher in SA-treated fruits. In particular, the 200.0 mM concentration caused approximately two times more malvidin-3-O-ß glucoside than the control. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity of the fruits treated with SA were significantly higher than those of the untreated berries. The activity of phenylalanine ammonia-lyase (PAL) in SA treated fruits significantly increased as compared with the untreated clusters. CONCLUSION: A general evaluation of the current results leads us to the conclusion that SA is a suitable and recommendable treatment for improving and increasing the phenolic and antioxidant capacity of grape berries. Spraying grape berries at pre-véraison stage with SA could therefore be a convenient strategy to increase quality and nutritional value of grape berries considerably. © 2019 Society of Chemical Industry.


Subject(s)
Anthocyanins/chemistry , Fruit/chemistry , Plant Extracts/chemistry , Salicylic Acid/pharmacology , Vitis/chemistry , Antioxidants/metabolism , Color , Fruit/drug effects , Phenols/chemistry , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Vitis/drug effects , Vitis/genetics
18.
J Sci Food Agric ; 94(9): 1758-63, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24272956

ABSTRACT

BACKGROUND: One of the most important saprophytic infections in fresh pistachio fruits after harvesting is Aspergillus flavus colonization, which significantly reduces fruit quality. Salicylic acid plays a crucial role in plant tissues and has a suppression effect on some fungi. RESULTS: The inhibitory effect of salicylic acid on the growth of A. flavus was assessed in vitro and in vivo. For this purpose, seven concentrations (0, 1, 3, 5, 7, 9 and 11 mmol L(-1)) of salicylic acid were used in both experiments. Also, aflatoxin B1 contents of the samples were analysed using immunoaffinity chromatography. The results obtained from in vitro experiments showed that salicylic acid significantly reduced Aspergillus growth at all concentrations, and at 9 mmol L(-1) growth was completely suppressed. In vivo evaluation showed relatively high levels of inhibition, though the intact treated fruits as compared with the injured treated fruits demonstrated higher inhibitory effects. CONCLUSION: Regarding the inhibitory effects of salicylic acid on the control of A. flavus contamination, its application on pistachio fruits after harvesting could be a promising approach to control the fungus infection and reduce aflatoxin production in treated fruits.


Subject(s)
Aflatoxin B1/analysis , Aspergillus flavus/drug effects , Food Microbiology , Fruit/microbiology , Pistacia/microbiology , Plant Diseases/microbiology , Salicylic Acid/pharmacology , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Diet , Humans , Salicylic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...