Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Phys Commun ; 252: 107131, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32624585

ABSTRACT

A new method to locate, with millimetre uncertainty, in 3D, a γ -ray source emitting multiple γ -rays in a cascade, employing conventional LaBr3(Ce) scintillation detectors, has been developed. Using 16 detectors in a symmetrical configuration the detector energy and time signals, resulting from the γ -ray interactions, are fed into a new source position reconstruction algorithm. The Monte-Carlo based Geant4 framework has been used to simulate the detector array and a 60Co source located at two positions within the spectrometer central volume. For a source located at (0,0,0) the algorithm reports X, Y, Z values of -0.3 ± 2.5, -0.4 ± 2.4, and -0.6 ± 2.5 mm, respectively. For a source located at (20,20,20) mm, with respect to the array centre, the algorithm reports X, Y, Z values of 20.2 ± 1.0, 20.2 ± 0.9, and 20.1 ± 1.2 mm. The resulting precision of the reconstruction means that this technique could find application in a number of areas including nuclear medicine, national security, radioactive waste assay and proton beam therapy.

2.
Sci Rep ; 9(1): 18820, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827167

ABSTRACT

A new technique for range verification in proton beam therapy has been developed. It is based on the detection of the prompt γ rays that are emitted naturally during the delivery of the treatment. A spectrometer comprising 16 LaBr3(Ce) detectors in a symmetrical configuration is employed to record the prompt γ rays emitted along the proton path. An algorithm has been developed that takes as inputs the LaBr3(Ce) detector signals and reconstructs the maximum γ-ray intensity peak position, in full 3 dimensions. For a spectrometer radius of 8 cm, which could accommodate a paediatric head and neck case, the prompt γ-ray origin can be determined from the width of the detected peak with a σ of 4.17 mm for a 180 MeV proton beam impinging a water phantom. For spectrometer radii of 15 and 25 cm to accommodate larger volumes this value increases to 5.65 and 6.36 mm. For a 8 cm radius, with a 5 and 10 mm undershoot, the σ is 4.31 and 5.47 mm. These uncertainties are comparable to the range uncertainties incorporated in treatment planning. This work represents the first step towards a new accurate, real-time, 3D range verification device for spot-scanning proton beam therapy.

3.
Tumori ; 103(5): 430-437, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28708234

ABSTRACT

BACKGROUND: This study was based on a survey to investigate perceptions of hadrontherapy of the members of the Italian Association of Medical Physics (AIFM). The survey was digitally submitted to the 991 members between the end of January and the beginning of April 2016. METHODS: A 19-item questionnaire was designed focusing on advantages and disadvantages of hadrontherapy, current status and possible future improvements, and need and opportunities for future investments in Italy and abroad. Information about professional qualifications, main fields of clinical involvement and specific competencies of the respondents was also collected. RESULTS: The survey was completed by 121 AIFM members (response rate 12.2%). In the answers collected, it was shown that medical physicists expressed interest in hadrontherapy mainly for reasons of personal interest rather than for professional needs (90% ± 2.5% vs. 52% ± 4.3% of the respondents, respectively), with a good knowledge of the related basic aspects as well as of the pros and cons of its application. However, poor knowledge of the current status of hadrontherapy was observed among the medical physicists not directly involved at a professional level, who were less than 3% of the physicists working in radiotherapy. CONCLUSIONS: In light of these results, the implementation of new training and education initiatives should be devised to promote a deeper and global knowledge of hadrontherapy-related issues, not only from a theoretical point of view but also in practical terms. Moreover, a close collaboration between highly specialized medical physicists employed in hadrontherapy centers and others in oncology hospitals should be -encouraged.


Subject(s)
Neoplasms/radiotherapy , Physics , Proton Therapy/trends , Surveys and Questionnaires , Humans , Italy , Neoplasms/epidemiology
4.
Tumori ; 103(2): 136-142, 2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28218381

ABSTRACT

PURPOSE: To validate and apply a method for the quantification of breathing-induced prostate motion (BIPM) for patients treated with radiotherapy and implanted with electromagnetic transponders for prostate localization and tracking. METHODS: For the analysis of electromagnetic transponder signal, dedicated software was developed and validated with a programmable breathing simulator phantom. The software was then applied to 1,132 radiotherapy fractions of 30 patients treated in supine position, and to a further 61 fractions of 2 patients treated in prone position. RESULTS: Application of the software in phantom demonstrated reliability of the developed method in determining simulated breathing frequencies and amplitudes. For supine patients, the in vivo analysis of BIPM resulted in median (maximum) amplitudes of 0.10 mm (0.35 mm), 0.24 mm (0.66 mm), and 0.17 mm (0.61 mm) in the left-right (LR), cranio-caudal (CC), and anterior-posterior (AP) directions, respectively. Breathing frequency ranged between 7.73 and 29.43 breaths per minute. For prone patients, the ranges of the BIPM amplitudes were 0.1-0.5 mm, 0.5-1.3 mm, and 0.7-1.7 mm in the LR, CC, and AP directions, respectively. CONCLUSIONS: The developed method was able to detect the BIPM with sub-millimeter accuracy. While for patients treated in supine position the BIPM represents a reduced source of treatment uncertainty, for patients treated in prone position, it can be higher than 3 mm.


Subject(s)
Prostate/physiopathology , Electromagnetic Phenomena , Humans , Male , Motion , Phantoms, Imaging , Prone Position/physiology , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Reproducibility of Results , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...