Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 25: e41294, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37498644

ABSTRACT

BACKGROUND: Cyber threats are increasing across all business sectors, with health care being a prominent domain. In response to the ever-increasing threats, health care organizations (HOs) are enhancing the technical measures with the use of cybersecurity controls and other advanced solutions for further protection. Despite the need for technical controls, humans are evidently the weakest link in the cybersecurity posture of HOs. This suggests that addressing the human aspects of cybersecurity is a key step toward managing cyber-physical risks. In practice, HOs are required to apply general cybersecurity and data privacy guidelines that focus on human factors. However, there is limited literature on the methodologies and procedures that can assist in successfully mapping these guidelines to specific controls (interventions), including awareness activities and training programs, with a measurable impact on personnel. To this end, tools and structured methodologies for assisting higher management in selecting the minimum number of required controls that will be most effective on the health care workforce are highly desirable. OBJECTIVE: This study aimed to introduce a cyber hygiene (CH) methodology that uses a unique survey-based risk assessment approach for raising the cybersecurity and data privacy awareness of different employee groups in HOs. The main objective was to identify the most effective strategy for managing cybersecurity and data privacy risks and recommend targeted human-centric controls that are tailored to organization-specific needs. METHODS: The CH methodology relied on a cross-sectional, exploratory survey study followed by a proposed risk-based survey data analysis approach. First, survey data were collected from 4 different employee groups across 3 European HOs, covering 7 categories of cybersecurity and data privacy risks. Next, survey data were transcribed and fitted into a proposed risk-based approach matrix that translated risk levels to strategies for managing the risks. RESULTS: A list of human-centric controls and implementation levels was created. These controls were associated with risk categories, mapped to risk strategies for managing the risks related to all employee groups. Our mapping empowered the computation and subsequent recommendation of subsets of human-centric controls to implement the identified strategy for managing the overall risk of the HOs. An indicative example demonstrated the application of the CH methodology in a simple scenario. Finally, by applying the CH methodology in the health care sector, we obtained results in the form of risk markings; identified strategies to manage the risks; and recommended controls for each of the 3 HOs, each employee group, and each risk category. CONCLUSIONS: The proposed CH methodology improves the CH perception and behavior of personnel in the health care sector and provides risk strategies together with a list of recommended human-centric controls for managing a wide range of cybersecurity and data privacy risks related to health care employees.


Subject(s)
Delivery of Health Care , Privacy , Humans , Cross-Sectional Studies , Computer Security , Organizations
2.
Sensors (Basel) ; 21(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34372354

ABSTRACT

Background: Cybersecurity is increasingly becoming a prominent concern among healthcare providers in adopting digital technologies for improving the quality of care delivered to patients. The recent reports on cyber attacks, such as ransomware and WannaCry, have brought to life the destructive nature of such attacks upon healthcare. In complement to cyberattacks, which have been targeted against the vulnerabilities of information technology (IT) infrastructures, a new form of cyber attack aims to exploit human vulnerabilities; such attacks are categorised as social engineering attacks. Following an increase in the frequency and ingenuity of attacks launched against hospitals and clinical environments with the intention of causing service disruption, there is a strong need to study the level of awareness programmes and training activities offered to the staff by healthcare organisations. Objective: The objective of this systematic review is to identify commonly encountered factors that cybersecurity postures of a healthcare organisation, resulting from the ignorance of cyber threat to healthcare. The systematic review aims to consolidate the current literature being reported upon human behaviour resulting in security gaps that mitigate the cyber defence strategy adopted by healthcare organisations. Additionally, the paper also reviews the organisational risk assessment methodology implemented and the policies being adopted to strengthen cybersecurity. Methods: The topic of cybersecurity within healthcare and the clinical environment has attracted the interest of several researchers, resulting in a broad range of literature. The inclusion criteria for the articles in the review stem from the scope of the five research questions identified. To this end, we conducted seven search queries across three repositories, namely (i) PubMed®/MED-LINE; (ii) Cumulative Index to Nursing and Allied Health Literature (CINAHL); and (iii) Web of Science (WoS), using key words related to cybersecurity awareness, training, organisation risk assessment methodologies, policies and recommendations adopted as counter measures within health care. These were restricted to around the last 12 years. Results: A total of 70 articles were selected to be included in the review, which addresses the complexity of cybersecurity measures adopted within the healthcare and clinical environments. The articles included in the review highlight the evolving nature of cybersecurity threats stemming from exploiting IT infrastructures to more advanced attacks launched with the intent of exploiting human vulnerability. A steady increase in the literature on the threat of phishing attacks evidences the growing threat of social engineering attacks. As a countermeasure, through the review, we identified articles that provide methodologies resulting from case studies to promote cybersecurity awareness among stakeholders. The articles included highlight the need to adopt cyber hygiene practices among healthcare professionals while accessing social media platforms, which forms an ideal test bed for the attackers to gain insight into the life of healthcare professionals. Additionally, the review also includes articles that present strategies adopted by healthcare organisations in countering the impact of social engineering attacks. The evaluation of the cybersecurity risk assessment of an organisation is another key area of study reported in the literature that recommends the organisation of European and international standards in countering social engineering attacks. Lastly, the review includes articles reporting on national case studies with an overview of the economic and societal impact of service disruptions encountered due to cyberattacks. Discussion: One of the limitations of the review is the subjective ranking of the authors associated to the relevance of literature to each of the research questions identified. We also acknowledge the limited amount of literature that focuses on human factors of cybersecurity in health care in general; therefore, the search queries were formulated using well-established cybersecurity related topics categorised according to the threats, risk assessment and organisational strategies reported in the literature.


Subject(s)
Computer Security , Social Media , Delivery of Health Care , Hospitals , Humans
3.
Sensors (Basel) ; 21(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34450740

ABSTRACT

The use of anti-forensic techniques is a very common practice that stealthy adversaries may deploy to minimise their traces and make the investigation of an incident harder by evading detection and attribution. In this paper, we study the interaction between a cyber forensic Investigator and a strategic Attacker using a game-theoretic framework. This is based on a Bayesian game of incomplete information played on a multi-host cyber forensics investigation graph of actions traversed by both players. The edges of the graph represent players' actions across different hosts in a network. In alignment with the concept of Bayesian games, we define two Attacker types to represent their ability of deploying anti-forensic techniques to conceal their activities. In this way, our model allows the Investigator to identify the optimal investigating policy taking into consideration the cost and impact of the available actions, while coping with the uncertainty of the Attacker's type and strategic decisions. To evaluate our model, we construct a realistic case study based on threat reports and data extracted from the MITRE ATT&CK STIX repository, Common Vulnerability Scoring System (CVSS), and interviews with cyber-security practitioners. We use the case study to compare the performance of the proposed method against two other investigative methods and three different types of Attackers.


Subject(s)
Computer Security , Bayes Theorem , Uncertainty
4.
Sensors (Basel) ; 21(16)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34450935

ABSTRACT

Addressing cyber and privacy risks has never been more critical for organisations. While a number of risk assessment methodologies and software tools are available, it is most often the case that one must, at least, integrate them into a holistic approach that combines several appropriate risk sources as input to risk mitigation tools. In addition, cyber risk assessment primarily investigates cyber risks as the consequence of vulnerabilities and threats that threaten assets of the investigated infrastructure. In fact, cyber risk assessment is decoupled from privacy impact assessment, which aims to detect privacy-specific threats and assess the degree of compliance with data protection legislation. Furthermore, a Privacy Impact Assessment (PIA) is conducted in a proactive manner during the design phase of a system, combining processing activities and their inter-dependencies with assets, vulnerabilities, real-time threats and Personally Identifiable Information (PII) that may occur during the dynamic life-cycle of systems. In this paper, we propose a cyber and privacy risk management toolkit, called AMBIENT (Automated Cyber and Privacy Risk Management Toolkit) that addresses the above challenges by implementing and integrating three distinct software tools. AMBIENT not only assesses cyber and privacy risks in a thorough and automated manner but it also offers decision-support capabilities, to recommend optimal safeguards using the well-known repository of the Center for Internet Security (CIS) Controls. To the best of our knowledge, AMBIENT is the first toolkit in the academic literature that brings together the aforementioned capabilities. To demonstrate its use, we have created a case scenario based on information about cyber attacks we have received from a healthcare organisation, as a reference sector that faces critical cyber and privacy threats.


Subject(s)
Computer Security , Privacy , Risk Assessment , Risk Management
5.
Sensors (Basel) ; 20(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32948064

ABSTRACT

The advent of the Smart Grid (SG) raises severe cybersecurity risks that can lead to devastating consequences. In this paper, we present a novel anomaly-based Intrusion Detection System (IDS), called ARIES (smArt gRid Intrusion dEtection System), which is capable of protecting efficiently SG communications. ARIES combines three detection layers that are devoted to recognising possible cyberattacks and anomalies against (a) network flows, (b) Modbus/Transmission Control Protocol (TCP) packets and (c) operational data. Each detection layer relies on a Machine Learning (ML) model trained using data originating from a power plant. In particular, the first layer (network flow-based detection) performs a supervised multiclass classification, recognising Denial of Service (DoS), brute force attacks, port scanning attacks and bots. The second layer (packet-based detection) detects possible anomalies related to the Modbus packets, while the third layer (operational data based detection) monitors and identifies anomalies upon operational data (i.e., time series electricity measurements). By emphasising on the third layer, the ARIES Generative Adversarial Network (ARIES GAN) with novel error minimisation functions was developed, considering mainly the reconstruction difference. Moreover, a novel reformed conditional input was suggested, consisting of random noise and the signal features at any given time instance. Based on the evaluation analysis, the proposed GAN network overcomes the efficacy of conventional ML methods in terms of Accuracy and the F1 score.

6.
Sensors (Basel) ; 20(16)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824808

ABSTRACT

Location-Based Services (LBSs) are playing an increasingly important role in people's daily activities nowadays. While enjoying the convenience provided by LBSs, users may lose privacy since they report their personal information to the untrusted LBS server. Although many approaches have been proposed to preserve users' privacy, most of them just focus on the user's location privacy, but do not consider the query privacy. Moreover, many existing approaches rely heavily on a trusted third-party (TTP) server, which may suffer from a single point of failure. To solve the problems above, in this paper we propose a Cache-Based Privacy-Preserving (CBPP) solution for users in LBSs. Different from the previous approaches, the proposed CBPP solution protects location privacy and query privacy simultaneously, while avoiding the problem of TTP server by having users collaborating with each other in a mobile peer-to-peer (P2P) environment. In the CBPP solution, each user keeps a buffer in his mobile device (e.g., smartphone) to record service data and acts as a micro TTP server. When a user needs LBSs, he sends a query to his neighbors first to seek for an answer. The user only contacts the LBS server when he cannot obtain the required service data from his neighbors. In this way, the user reduces the number of queries sent to the LBS server. We argue that the fewer queries are submitted to the LBS server, the less the user's privacy is exposed. To users who have to send live queries to the LBS server, we employ the l-diversity, a powerful privacy protection definition that can guarantee the user's privacy against attackers using background knowledge, to further protect their privacy. Evaluation results show that the proposed CBPP solution can effectively protect users' location and query privacy with a lower communication cost and better quality of service.


Subject(s)
Algorithms , Privacy , Humans , Smartphone
7.
Sensors (Basel) ; 17(11)2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29088085

ABSTRACT

The occurrence of congestion has an extremely deleterious impact on the performance of Wireless Sensor Networks (WSNs). This article presents a novel protocol, named COALA (COngestion ALleviation and Avoidance), which aims to act both proactively, in order to avoid the creation of congestion in WSNs, and reactively, so as to mitigate the diffusion of upcoming congestion through alternative path routing. Its operation is based on the utilization of an accumulative cost function, which considers both static and dynamic metrics in order to send data through the paths that are less probable to be congested. COALA is validated through simulation tests, which exhibit its ability to achieve remarkable reduction of loss ratios, transmission delays and energy dissipation. Moreover, the appropriate adjustment of the weighting of the accumulative cost function enables the algorithm to adapt to the performance criteria of individual case scenarios.

SELECTION OF CITATIONS
SEARCH DETAIL
...