Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 7(7): 191992, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32874606

ABSTRACT

Cerebral arteriovenous malformation (AVM) is a congenital brain vessels pathology, in which the arterial and venous blood channels are connected by tangles of abnormal blood vessels. It is a dangerous disease that affects brain functioning causing the high risk of intracerebral haemorrhage. One of AVM treatment methods is embolization-the endovascular filling of the AVM vessel bundle with a special embolic agent. This method is widely used, but still in some cases is accompanied by intraoperative AVM vessels rupture. In this paper, the optimal scenario of AVM embolization is studied from the safety and effectiveness of the procedure point of view. The co-movement of blood and embolic agent in the AVM body is modelled on the basis of a one-dimensional two-phase filtration model. Optimal control problem with phase constraints arising from medicine is formulated and numerically solved. In numerical analysis, the monotone modification of the CABARET scheme is used. Optimal embolization model is constructed on the basis of real patients' clinical data collected during neurosurgical operations. For the special case of embolic agent, input admissible and optimal embolization scenarios were calculated.

2.
Interv Neuroradiol ; 21(1): 101-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25934783

ABSTRACT

Endovascular embolization is an important modality in the treatment of brain AVMs. Nowadays staged embolization is the method of choice for the prevention of perioperative hemorrhagic complications. Current theory suggests that simultaneous occlusion of more than 60% of AVM volume induces significant redistribution local blood flow. That, in turn, may lead to hemorrhage due to AVM rupture. Aside from angiographic findings, there is still no method that predicts the degree of safe partial embolization. Intraluminal measurement of flow velocity and pressure in the vicinity of the AVM nidus might allow detecting the changes in local hemodynamics. That can provide a valuable data and shed the light on the origin of vascular catastrophes. Ten patients underwent 12 embolization sessions with intraluminal flow velocity and pressure monitoring. The measurements were performed by dual-sensor guidewire. The "Combomap" (Volcano) system with Combowire microguidewires was chosen for measurements, as there is a documented experience of safe use of said guidewires in the cerebral vasculature. The findings observed during the study matched empirical data as well as the current physiological hypothesis of AVM hemorrhage. In conjunction with DSA runs, intraluminal flow velocity and pressure monitoring has the potential to become a valuable tool in AVM treatment.


Subject(s)
Embolization, Therapeutic/methods , Endovascular Procedures , Hemodynamics , Intracranial Arteriovenous Malformations/physiopathology , Intracranial Arteriovenous Malformations/therapy , Adult , Female , Humans , Male , Perioperative Period
SELECTION OF CITATIONS
SEARCH DETAIL
...