Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Appl Fluoresc ; 7(1): 014003, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30641489

ABSTRACT

Photon upconversion nanomaterials have a wide range of applications, including biosensing and deep-tissue imaging. Their typically very weak and narrow absorption bands together with their size dependent luminescence efficiency can limit their application potential. This has been addressed by increasingly sophisticated core-shell particle architectures including the sensitization with organic dyes that strongly absorb in the near infrared (NIR). In this work, we present a simple water-dispersible micellar system that features energy transfer from the novel NIR excitable dye, 1859 SL with a high molar absorption coefficient and a moderate fluorescence quantum yield to oleate-capped NaYF4:20%Yb(III), 2%Er(III) upconversion nanoparticles (UCNP) upon 808 nm excitation. The micelles were formed using the surfactants Pluronic F-127 and Tween 80 to produce a hydrophilic dye-UCNP system. Successful energy transfer from the dye to the UCNP could be confirmed by emission measurements that revealed the occurrence of upconversion emission upon excitation at 808 nm and an enhancement of the green Er(III) emission compared to direct Er(III) excitation at 808 nm.

2.
Methods Appl Fluoresc ; 6(1): 012001, 2017 12 21.
Article in English | MEDLINE | ID: mdl-28914610

ABSTRACT

J-aggregates are fascinating fluorescent nanomaterials formed by highly ordered assembly of organic dyes with the spectroscopic properties dramatically different from that of single or disorderly assembled dye molecules. They demonstrate very narrow red-shifted absorption and emission bands, strongly increased absorbance together with the decrease of radiative lifetime, highly polarized emission and other valuable features. The mechanisms of their electronic transitions are understood by formation of delocalized excitons already on the level of several coupled monomers. Cyanine dyes are unique in forming J-aggregates over the broad spectral range, from blue to near-IR. With the aim to inspire further developments, this review is focused on the optical characteristics of J-aggregates in connection with the dye structures and on their diverse already realized and emerging applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...