Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 3(11): 1224-1233, 2018 11.
Article in English | MEDLINE | ID: mdl-30349082

ABSTRACT

The circumsporozoite protein (CSP) is the major surface protein of malaria sporozoites (SPZs), the motile and invasive parasite stage inoculated in the host skin by infected mosquitoes. Antibodies against the central CSP repeats of different plasmodial species are known to block SPZ infectivity1-5, but the precise mechanism by which these effectors operate is not completely understood. Here, using a rodent Plasmodium yoelii malaria model, we show that sterile protection mediated by anti-P. yoelii CSP humoral immunity depends on the parasite inoculation into the host skin, where antibodies inhibit motility and kill P. yoelii SPZs via a characteristic 'dotty death' phenotype. Passive transfer of an anti-repeat monoclonal antibody (mAb) recapitulates the skin inoculation-dependent protection, in a complement- and Fc receptor γ-independent manner. This purified mAb also decreases motility and, notably, induces the dotty death of P. yoelii SPZs in vitro. Cytotoxicity is species-transcendent since cognate anti-CSP repeat mAbs also kill Plasmodium berghei and Plasmodium falciparum SPZs. mAb cytotoxicity requires the actomyosin motor-dependent translocation and stripping of the protective CSP surface coat, rendering the parasite membrane susceptible to the SPZ pore-forming-like protein secreted to wound and traverse the host cell membrane6. The loss of SPZ fitness caused by anti-P. yoelii CSP repeat antibodies is thus a dynamic process initiated in the host skin where SPZs either stop moving7, or migrate and traverse cells to progress through the host tissues7-9 at the eventual expense of their own life.


Subject(s)
Antibodies, Protozoan/pharmacology , Malaria/immunology , Plasmodium yoelii/immunology , Protozoan Proteins/immunology , Skin/parasitology , Animals , Antibodies, Monoclonal/pharmacology , Cell Movement/drug effects , Culicidae , Female , Mice , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Plasmodium yoelii/cytology , Pore Forming Cytotoxic Proteins/metabolism , Sporozoites/cytology , Sporozoites/immunology
2.
Front Immunol ; 8: 1275, 2017.
Article in English | MEDLINE | ID: mdl-29075260

ABSTRACT

Plasmodium vivax is the most common species that cause malaria outside of the African continent. The development of an efficacious vaccine would contribute greatly to control malaria. Recently, using bacterial and adenoviral recombinant proteins based on the P. vivax circumsporozoite protein (CSP), we demonstrated the possibility of eliciting strong antibody-mediated immune responses to each of the three allelic forms of P. vivax CSP (PvCSP). In the present study, recombinant proteins representing the PvCSP alleles (VK210, VK247, and P. vivax-like), as well as a hybrid polypeptide, named PvCSP-All epitopes, were generated. This hybrid containing the conserved C-terminal of the PvCSP and the three variant repeat domains in tandem were successfully produced in the yeast Pichia pastoris. After purification and biochemical characterization, they were used for the experimental immunization of C57BL/6 mice in a vaccine formulation containing the adjuvant Poly(I:C). Immunization with a recombinant protein expressing all three different allelic forms in fusion elicited high IgG antibody titers reacting with all three different allelic variants of PvCSP. The antibodies targeted both the C-terminal and repeat domains of PvCSP and recognized the native protein on the surface of P. vivax sporozoites. More importantly, mice that received the vaccine formulation were protected after challenge with chimeric Plasmodium berghei sporozoites expressing CSP repeats of P. vivax sporozoites (Pb/PvVK210). Our results suggest that it is possible to elicit protective immunity against one of the most common PvCSP alleles using soluble recombinant proteins expressed by P. pastoris. These recombinant proteins are promising candidates for clinical trials aiming to develop a multiallele vaccine against P. vivax malaria.

3.
PLoS One ; 10(2): e0117778, 2015.
Article in English | MEDLINE | ID: mdl-25679777

ABSTRACT

Targeting antigens to dendritic cells (DCs) by using hybrid monoclonal antibodies (mAbs) directed against DC receptors is known to improve activation and support long-lasting T cell responses. In the present work, we used the mAb αDEC205 fused to the Trypanosoma cruzi amastigote surface protein 2 (ASP-2) to identify a region of this protein recognized by specific T cells. The hybrid αDEC-ASP2 mAb was successfully generated and preserved its ability to bind the DEC205 receptor. Immunization of BALB/c mice with the recombinant mAb in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)) specifically enhanced the number of IFN-γ producing cells and CD4+ T cell proliferation when compared to mice immunized with a mAb without receptor affinity or with the non-targeted ASP-2 protein. The strong immune response induced in mice immunized with the hybrid αDEC-ASP2 mAb allowed us to identify an ASP-2-specific CD4+ T cell epitope recognized by the BALB/c MHCII haplotype. We conclude that targeting parasite antigens to DCs is a useful strategy to enhance T cell mediated immune responses facilitating the identification of new T-cell epitopes.


Subject(s)
Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , Immunodominant Epitopes/immunology , Trypanosoma cruzi/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibody Formation , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , CD4-Positive T-Lymphocytes/metabolism , Chagas Disease/immunology , Chagas Disease/metabolism , Dendritic Cells/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunization , Mice , Neuraminidase/genetics , Neuraminidase/immunology , Peptides/immunology , Protein Binding/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
4.
J Immunol ; 191(10): 5160-9, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24133169

ABSTRACT

The mechanism by which protective immunity to Plasmodium is lost in the absence of continued exposure to this parasite has yet to be fully elucidated. It has been recently shown that IFN-γ produced during human and murine acute malaria primes the immune response to TLR agonists. In this study, we investigated whether IFN-γ-induced priming is important to maintain long-term protective immunity against Plasmodium chabaudi AS malaria. On day 60 postinfection, C57BL/6 mice still had chronic parasitemia and efficiently controlled homologous and heterologous (AJ strain) challenge. The spleens of chronic mice showed augmented numbers of effector/effector memory (TEM) CD4(+) cells, which is associated with increased levels of IFN-γ-induced priming (i.e., high expression of IFN-inducible genes and TLR hyperresponsiveness). After parasite elimination, IFN-γ-induced priming was no longer detected and protective immunity to heterologous challenge was mostly lost with >70% mortality. Spontaneously cured mice had high serum levels of parasite-specific IgG, but effector T/TEM cell numbers, parasite-driven CD4(+) T cell proliferation, and IFN-γ production were similar to noninfected controls. Remarkably, the priming of cured mice with low doses of IFN-γ rescued TLR hyperresponsiveness and the capacity to control heterologous challenge, increasing the TEM cell population and restoring the CD4(+) T cell responses to parasites. Contribution of TLR signaling to the CD4(+) T cell responses in chronic mice was supported by data obtained in mice lacking the MyD88 adaptor. These results indicate that IFN-γ-induced priming is required to maintain protective immunity against P. chabaudi and aid in establishing the molecular basis of strain-transcending immunity in human malaria.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Malaria/immunology , Plasmodium chabaudi/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation , Female , Immunoglobulin G/blood , Lymphocyte Count , Malaria/blood , Malaria/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Parasitemia/immunology , Parasitemia/parasitology , Signal Transduction/immunology
5.
PLoS Negl Trop Dis ; 7(7): e2330, 2013.
Article in English | MEDLINE | ID: mdl-23875054

ABSTRACT

Dengue is the most prevalent arboviral infection, affecting millions of people every year. Attempts to control such infection are being made, and the development of a vaccine is a World Health Organization priority. Among the proteins being tested as vaccine candidates in preclinical settings is the non-structural protein 1 (NS1). In the present study, we tested the immune responses generated by targeting the NS1 protein to two different dendritic cell populations. Dendritic cells (DCs) are important antigen presenting cells, and targeting proteins to maturing DCs has proved to be an efficient means of immunization. Antigen targeting is accomplished by the use of a monoclonal antibody (mAb) directed against a DC cell surface receptor fused to the protein of interest. We used two mAbs (αDEC205 and αDCIR2) to target two distinct DC populations, expressing either DEC205 or DCIR2 endocytic receptors, respectively, in mice. The fusion mAbs were successfully produced, bound to their respective receptors, and were used to immunize BALB/c mice in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)), as a DC maturation stimulus. We observed induction of strong anti-NS1 antibody responses and similar antigen binding affinity irrespectively of the DC population targeted. Nevertheless, the IgG1/IgG2a ratios were different between mouse groups immunized with αDEC-NS1 and αDCIR2-NS1 mAbs. When we tested the induction of cellular immune responses, the number of IFN-γ producing cells was higher in αDEC-NS1 immunized animals. In addition, mice immunized with the αDEC-NS1 mAb were significantly protected from a lethal intracranial challenge with the DENV2 NGC strain when compared to mice immunized with αDCIR2-NS1 mAb. Protection was partially mediated by CD4(+) and CD8(+) T cells as depletion of these populations reduced both survival and morbidity signs. We conclude that targeting the NS1 protein to the DEC205(+) DC population with poly (I:C) opens perspectives for dengue vaccine development.


Subject(s)
Dendritic Cells/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Viral Nonstructural Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dengue Vaccines/administration & dosage , Disease Models, Animal , Humans , Immunoglobulin G/blood , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Inbred BALB C , Poly I-C/administration & dosage , Protein Transport , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...