Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 3(11): 1224-1233, 2018 11.
Article in English | MEDLINE | ID: mdl-30349082

ABSTRACT

The circumsporozoite protein (CSP) is the major surface protein of malaria sporozoites (SPZs), the motile and invasive parasite stage inoculated in the host skin by infected mosquitoes. Antibodies against the central CSP repeats of different plasmodial species are known to block SPZ infectivity1-5, but the precise mechanism by which these effectors operate is not completely understood. Here, using a rodent Plasmodium yoelii malaria model, we show that sterile protection mediated by anti-P. yoelii CSP humoral immunity depends on the parasite inoculation into the host skin, where antibodies inhibit motility and kill P. yoelii SPZs via a characteristic 'dotty death' phenotype. Passive transfer of an anti-repeat monoclonal antibody (mAb) recapitulates the skin inoculation-dependent protection, in a complement- and Fc receptor γ-independent manner. This purified mAb also decreases motility and, notably, induces the dotty death of P. yoelii SPZs in vitro. Cytotoxicity is species-transcendent since cognate anti-CSP repeat mAbs also kill Plasmodium berghei and Plasmodium falciparum SPZs. mAb cytotoxicity requires the actomyosin motor-dependent translocation and stripping of the protective CSP surface coat, rendering the parasite membrane susceptible to the SPZ pore-forming-like protein secreted to wound and traverse the host cell membrane6. The loss of SPZ fitness caused by anti-P. yoelii CSP repeat antibodies is thus a dynamic process initiated in the host skin where SPZs either stop moving7, or migrate and traverse cells to progress through the host tissues7-9 at the eventual expense of their own life.


Subject(s)
Antibodies, Protozoan/pharmacology , Malaria/immunology , Plasmodium yoelii/immunology , Protozoan Proteins/immunology , Skin/parasitology , Animals , Antibodies, Monoclonal/pharmacology , Cell Movement/drug effects , Culicidae , Female , Mice , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Plasmodium yoelii/cytology , Pore Forming Cytotoxic Proteins/metabolism , Sporozoites/cytology , Sporozoites/immunology
2.
PLoS One ; 10(2): e0117778, 2015.
Article in English | MEDLINE | ID: mdl-25679777

ABSTRACT

Targeting antigens to dendritic cells (DCs) by using hybrid monoclonal antibodies (mAbs) directed against DC receptors is known to improve activation and support long-lasting T cell responses. In the present work, we used the mAb αDEC205 fused to the Trypanosoma cruzi amastigote surface protein 2 (ASP-2) to identify a region of this protein recognized by specific T cells. The hybrid αDEC-ASP2 mAb was successfully generated and preserved its ability to bind the DEC205 receptor. Immunization of BALB/c mice with the recombinant mAb in the presence of polyriboinosinic: polyribocytidylic acid (poly (I:C)) specifically enhanced the number of IFN-γ producing cells and CD4+ T cell proliferation when compared to mice immunized with a mAb without receptor affinity or with the non-targeted ASP-2 protein. The strong immune response induced in mice immunized with the hybrid αDEC-ASP2 mAb allowed us to identify an ASP-2-specific CD4+ T cell epitope recognized by the BALB/c MHCII haplotype. We conclude that targeting parasite antigens to DCs is a useful strategy to enhance T cell mediated immune responses facilitating the identification of new T-cell epitopes.


Subject(s)
Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , Immunodominant Epitopes/immunology , Trypanosoma cruzi/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibody Formation , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , CD4-Positive T-Lymphocytes/metabolism , Chagas Disease/immunology , Chagas Disease/metabolism , Dendritic Cells/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Immunization , Mice , Neuraminidase/genetics , Neuraminidase/immunology , Peptides/immunology , Protein Binding/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
3.
J Immunol ; 191(10): 5160-9, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24133169

ABSTRACT

The mechanism by which protective immunity to Plasmodium is lost in the absence of continued exposure to this parasite has yet to be fully elucidated. It has been recently shown that IFN-γ produced during human and murine acute malaria primes the immune response to TLR agonists. In this study, we investigated whether IFN-γ-induced priming is important to maintain long-term protective immunity against Plasmodium chabaudi AS malaria. On day 60 postinfection, C57BL/6 mice still had chronic parasitemia and efficiently controlled homologous and heterologous (AJ strain) challenge. The spleens of chronic mice showed augmented numbers of effector/effector memory (TEM) CD4(+) cells, which is associated with increased levels of IFN-γ-induced priming (i.e., high expression of IFN-inducible genes and TLR hyperresponsiveness). After parasite elimination, IFN-γ-induced priming was no longer detected and protective immunity to heterologous challenge was mostly lost with >70% mortality. Spontaneously cured mice had high serum levels of parasite-specific IgG, but effector T/TEM cell numbers, parasite-driven CD4(+) T cell proliferation, and IFN-γ production were similar to noninfected controls. Remarkably, the priming of cured mice with low doses of IFN-γ rescued TLR hyperresponsiveness and the capacity to control heterologous challenge, increasing the TEM cell population and restoring the CD4(+) T cell responses to parasites. Contribution of TLR signaling to the CD4(+) T cell responses in chronic mice was supported by data obtained in mice lacking the MyD88 adaptor. These results indicate that IFN-γ-induced priming is required to maintain protective immunity against P. chabaudi and aid in establishing the molecular basis of strain-transcending immunity in human malaria.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Malaria/immunology , Plasmodium chabaudi/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation , Female , Immunoglobulin G/blood , Lymphocyte Count , Malaria/blood , Malaria/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Parasitemia/immunology , Parasitemia/parasitology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...