Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2757: 185-200, 2024.
Article in English | MEDLINE | ID: mdl-38668967

ABSTRACT

Long-read sequencing has proven the necessity for high-quality genomic assemblies of reference species, including enigmatic ctenophores. Obtaining high-molecular-weight genomic DNA is pivotal to this process and has proven highly problematic for many species. Here, we discuss different methodologies for gDNA isolation and present a protocol for isolating gDNA for several members of the phylum Ctenophora. Specifically, we describe a Pacific Biosciences library construction method used in conjunction with gDNA isolation methods that have proven successful in obtaining high-quality genomic assemblies in ctenophores.


Subject(s)
Ctenophora , DNA , Genomics , Sequence Analysis, DNA , Animals , Ctenophora/genetics , Genomics/methods , DNA/genetics , DNA/isolation & purification , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Gene Library , Genome/genetics
2.
Genome Announc ; 1(6)2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24285647

ABSTRACT

We report the complete genome sequence of Carnobacterium gilichinskyi strain WN1359, previously isolated from Siberian permafrost and capable of growth under cold (0°C), anoxic, CO2-dominated, low-pressure (0.7-kPa) conditions in a simulation of the Mars atmosphere.

3.
Genome Announc ; 1(4)2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23950115

ABSTRACT

We report the complete genome sequence of Serratia liquefaciens strain ATCC 27592, which was previously identified as capable of growth under low-pressure conditions. To the best of our knowledge, this is the first announcement of the complete genome sequence of an S. liquefaciens strain.

4.
J Biomol Tech ; 14(4): 270-7, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14715885

ABSTRACT

Like most other DNA sequencing core facilities, one of our continuing goals is to improve our sequence output without substantially adding to cost. To minimize sample-to-sample variability in template DNA concentration, we implemented the rolling circle amplification (RCA) procedure for preparing our DNA templates. In addition to saving time and reducing the number of steps in template DNA preparation, the RCA method has the potential to normalize the DNA concentration in samples that can be sequenced directly without additional purification. In the present study, we used RCA-generated templates to test a recently reported procedure that increased sequence quality by resuspending the sequenced products in low concentrations of agarose before capillary electrophoresis (CE) on a MegaBACE 1000 platform. Although we did not obtain the expected result using the specified procedure, a modification resulted in up to 60% increase in total sequence yield per sample plate. A combination of agarose and formamide-EDTA in the resuspension solution enabled us to generate long-read and high-quality sequences for more than 38,000 templates with minimal additional cost.


Subject(s)
DNA, Bacterial/genetics , Electrophoresis, Capillary/methods , Sequence Analysis, DNA/methods , DNA, Bacterial/isolation & purification , DNA, Circular/genetics , Edetic Acid , Electrophoresis, Agar Gel , Electrophoresis, Capillary/instrumentation , Equipment Design , Formamides , Nucleic Acid Amplification Techniques , Plasmids , Quality Control , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Solutions , Templates, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...