Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(10)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38465682

ABSTRACT

We investigate the endofullerene system 3He@C60 with a four-dimensional potential energy surface (PES) to include the three He translational degrees of freedom and C60 cage radius. We compare second order Møller-Plesset perturbation theory (MP2), spin component scaled-MP2, scaled opposite spin-MP2, random phase approximation (RPA)@Perdew, Burke, and Ernzerhof (PBE), and corrected Hartree-Fock-RPA to calibrate and gain confidence in the choice of electronic structure method. Due to the high cost of these calculations, the PES is interpolated using Gaussian Process Regression (GPR), owing to its effectiveness with sparse training data. The PES is split into a two-dimensional radial surface, to which corrections are applied to achieve an overall four-dimensional surface. The nuclear Hamiltonian is diagonalized to generate the in-cage translational/vibrational eigenstates. The degeneracy of the three-dimensional harmonic oscillator energies with principal quantum number n is lifted due to the anharmonicity in the radial potential. The (2l + 1)-fold degeneracy of the angular momentum states is also weakly lifted, due to the angular dependence in the potential. We calculate the fundamental frequency to range between 96 and 110 cm-1 depending on the electronic structure method used. Error bars of the eigenstate energies were calculated from the GPR and are on the order of ∼±1.5 cm-1. Wavefunctions are also compared by considering their overlap and Hellinger distance to the one-dimensional empirical potential. As with the energies, the two ab initio methods MP2 and RPA@PBE show the best agreement. While MP2 has better agreement than RPA@PBE, due to its higher computational efficiency and comparable performance, we recommend RPA as an alternative electronic structure method of choice to MP2 for these systems.

2.
J Chem Phys ; 159(16)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37877488

ABSTRACT

Endohedral fullerenes, or endofullerenes, are chemical systems of fullerene cages encapsulating single atoms or small molecules. These species provide an interesting challenge of Potential Energy Surface determination as examples of non-covalently bonded, bound systems. While the majority of studies focus on C60 as the encapsulating cage, introducing some anisotropy by using a different fullerene, e.g., C70 can unveil a double well potential along the unique axis. By approximating the potential as a pairwise Lennard-Jones (LJ) summation over the fixed C cage atoms, the parameter space of the Hamiltonian includes three tunable variables: (M, ɛ, σ) representing the mass of the trapped species, the LJ energy, and length scales respectively. Fixing the mass and allowing the others to vary can imitate the potentials of endohedral species trapped in more elongated fullerenes. We choose to explore the LJ parameter space of an endohedral atom in C70 with ɛ ∈ [20, 150 cm-1], and σ ∈ [2.85, 3.05 Å]. As the barrier height and positions of these wells vary between [1, 264 cm-1] and [0.35, 0.85 Å] respectively, using a 3D direct product basis of 1D harmonic oscillator (HO) wavefunctions centred at the origin where there is a local maximum is unphysical. Instead we propose the use of a non-orthogonal basis set, using 1D HO wavefunctions centred in each minimum and compare this to other choices. The ground state energy of the X@C70 is tracked across the LJ parameter space, along with its corresponding nuclear translational wavefunctions. A classification of the wavefunction characteristics, namely the prolateness and "peanut-likeness" based on its statistical moments is also proposed. Excited states of longer fullerenes are assigned quantum numbers, and the fundamental transitions of Ne@C70 are tracked across the parameter space.

SELECTION OF CITATIONS
SEARCH DETAIL
...