Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
RMD Open ; 10(2)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942592

ABSTRACT

OBJECTIVES: To investigate the efficacy, safety, pharmacokinetics and pharmacodynamics of nipocalimab in participants with moderate to severe active rheumatoid arthritis (RA) and inadequate response or intolerance to ≥1 antitumour necrosis factor agent. METHODS: In this phase 2a study, participants with RA seropositive for anticitrullinated protein antibodies (ACPA) or rheumatoid factors were randomised 3:2 to nipocalimab (15 mg/kg intravenously every 2 weeks) or placebo from Weeks 0 to 10. Efficacy endpoints (primary endpoint: change from baseline in Disease Activity Score 28 using C reactive protein (DAS28-CRP) at Week 12) and patient-reported outcomes (PROs) were assessed through Week 12. Safety, pharmacokinetics and pharmacodynamics were assessed through Week 18. RESULTS: 53 participants were enrolled (nipocalimab/placebo, n=33/20). Although the primary endpoint did not reach statistical significance for nipocalimab versus placebo, a numerically higher change from baseline in DAS28-CRP at Week 12 was observed (least squares mean (95% CI): -1.03 (-1.66 to -0.40) vs -0.58 (-1.24 to 0.07)), with numerically higher improvements in all secondary efficacy outcomes and PROs. Serious adverse events were reported in three participants (burn infection, infusion-related reaction and deep vein thrombosis). Nipocalimab significantly and reversibly reduced serum immunoglobulin G, ACPA and circulating immune complex levels but not serum inflammatory markers, including CRP. ACPA reduction was associated with DAS28-CRP remission and 50% response rate in American College of Rheumatology (ACR) criteria; participants with a higher baseline ACPA had greater clinical improvement. CONCLUSIONS: Despite not achieving statistical significance in the primary endpoint, nipocalimab showed consistent, numerical efficacy benefits in participants with moderate to severe active RA, with greater benefit observed for participants with a higher baseline ACPA. TRIAL REGISTRATION NUMBER: NCT04991753.


Subject(s)
Antibodies, Monoclonal, Humanized , Antirheumatic Agents , Arthritis, Rheumatoid , Severity of Illness Index , Humans , Arthritis, Rheumatoid/drug therapy , Male , Female , Middle Aged , Treatment Outcome , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Aged , Adult , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Double-Blind Method , Patient Reported Outcome Measures , Anti-Citrullinated Protein Antibodies/blood
2.
EMBO J ; 41(11): e109324, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35471583

ABSTRACT

In activated B cells, activation-induced cytidine deaminase (AID) generates programmed DNA lesions required for antibody class switch recombination (CSR), which may also threaten genome integrity. AID dynamically shuttles between cytoplasm and nucleus, and the majority stays in the cytoplasm due to active nuclear export mediated by its C-terminal peptide. In immunodeficient-patient cells expressing mutant AID lacking its C-terminus, a catalytically active AID-delC protein accumulates in the nucleus but nevertheless fails to support CSR. To resolve this apparent paradox, we dissected the function of AID-delC proteins in the CSR process and found that they cannot efficiently target antibody genes. We demonstrate that AID-delC proteins form condensates both in vivo and in vitro, dependent on its N-terminus and on a surface arginine-rich patch. Co-expression of AID-delC and wild-type AID leads to an unbalanced nuclear AID-delC/AID ratio, with AID-delC proteins able to trap wild-type AID in condensates, resulting in a dominant-negative phenotype that could contribute to immunodeficiency. The co-condensation model of mutant and wild-type proteins could be an alternative explanation for the dominant-negative effect in genetic disorders.


Subject(s)
Cytidine Deaminase , Immunoglobulin Class Switching , B-Lymphocytes , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA/metabolism , Humans , Immunoglobulin Class Switching/genetics
3.
Cell Mol Gastroenterol Hepatol ; 12(5): 1719-1741, 2021.
Article in English | MEDLINE | ID: mdl-34284165

ABSTRACT

BACKGROUND & AIMS: The limited availability of organoid systems that mimic the molecular signatures and architecture of human intestinal epithelium has been an impediment to allowing them to be harnessed for the development of therapeutics as well as physiological insights. We developed a microphysiological Organ-on-Chip (Emulate, Inc, Boston, MA) platform designed to mimic properties of human intestinal epithelium leading to insights into barrier integrity. METHODS: We combined the human biopsy-derived leucine-rich repeat-containing G-protein-coupled receptor 5-positive organoids and Organ-on-Chip technologies to establish a micro-engineered human Colon Intestine-Chip (Emulate, Inc, Boston, MA). We characterized the proximity of the model to human tissue and organoids maintained in suspension by RNA sequencing analysis, and their differentiation to intestinal epithelial cells on the Colon Intestine-Chip under variable conditions. Furthermore, organoids from different donors were evaluated to understand variability in the system. Our system was applied to understanding the epithelial barrier and characterizing mechanisms driving the cytokine-induced barrier disruption. RESULTS: Our data highlight the importance of the endothelium and the in vivo tissue-relevant dynamic microenvironment in the Colon Intestine-Chip in the establishment of a tight monolayer of differentiated, polarized, organoid-derived intestinal epithelial cells. We confirmed the effect of interferon-γ on the colonic barrier and identified reorganization of apical junctional complexes, and induction of apoptosis in the intestinal epithelial cells as mediating mechanisms. We show that in the human Colon Intestine-Chip exposure to interleukin 22 induces disruption of the barrier, unlike its described protective role in experimental colitis in mice. CONCLUSIONS: We developed a human Colon Intestine-Chip platform and showed its value in the characterization of the mechanism of action of interleukin 22 in the human epithelial barrier. This system can be used to elucidate, in a time- and challenge-dependent manner, the mechanism driving the development of leaky gut in human beings and to identify associated biomarkers.


Subject(s)
Cellular Microenvironment , Colon/physiology , Intestinal Mucosa/metabolism , Biomarkers , Cell Culture Techniques , Computational Biology , Gene Expression Profiling , Gene Expression Regulation , Humans , Interleukins/metabolism , Intestinal Mucosa/microbiology , Lab-On-A-Chip Devices , Organoids , Permeability , Transcriptome , Interleukin-22
4.
Proc Natl Acad Sci U S A ; 115(4): 762-767, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311308

ABSTRACT

Ig heavy chain (IgH) class switch recombination (CSR) in B lymphocytes switches IgH constant regions to change antibody functions. CSR is initiated by DNA double-strand breaks (DSBs) within a donor IgH switch (S) region and a downstream acceptor S region. CSR is completed by fusing donor and acceptor S region DSB ends by classical nonhomologous end-joining (C-NHEJ) and, in its absence, by alternative end-joining that is more biased to use longer junctional microhomologies (MHs). Deficiency for DSB response (DSBR) factors, including ataxia telangiectasia-mutated (ATM) and 53BP1, variably impair CSR end-joining, with 53BP1 deficiency having the greatest impact. However, studies of potential impact of DSBR factor deficiencies on MH-mediated CSR end-joining have been technically limited. We now use a robust DSB joining assay to elucidate impacts of deficiencies for DSBR factors on CSR and chromosomal translocation junctions in primary mouse B cells and CH12F3 B-lymphoma cells. Compared with wild-type, CSR and c-myc to S region translocation junctions in the absence of 53BP1, and, to a lesser extent, other DSBR factors, have increased MH utilization; indeed, 53BP1-deficient MH profiles resemble those associated with C-NHEJ deficiency. However, translocation junctions between c-myc DSB and general DSBs genome-wide are not MH-biased in ATM-deficient versus wild-type CH12F3 cells and are less biased in 53BP1- and C-NHEJ-deficient cells than CSR junctions or c-myc to S region translocation junctions. We discuss potential roles of DSBR factors in suppressing increased MH-mediated DSB end-joining and features of S regions that may render their DSBs prone to MH-biased end-joining in the absence of DSBR factors.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Immunoglobulin Class Switching , Translocation, Genetic , Animals , Cell Line , High-Throughput Nucleotide Sequencing , Mice
5.
Proc Natl Acad Sci U S A ; 114(49): E10560-E10567, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29158395

ABSTRACT

In B cells, Ig class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID), the activity of which leads to DNA double-strand breaks (DSBs) within IgH switch (S) regions. Preferential targeting of AID-mediated DSBs to S sequences is critical for allowing diversification of antibody functions, while minimizing potential off-target oncogenic events. Here, we used gene targeted inactivation of histone methyltransferase (HMT) multiple myeloma SET domain (MMSET) in mouse B cells and the CH12F3 cell line to explore its role in CSR. We find that deletion of MMSET-II, the isoform containing the catalytic SET domain, inhibits CSR without affecting either IgH germline transcription or joining of DSBs within S regions by classical nonhomologous end joining (C-NHEJ). Instead, we find that MMSET-II inactivation leads to decreased AID recruitment and DSBs at the upstream donor Sµ region. Our findings suggest a role for the HMT MMSET in promoting AID-mediated DNA breaks during CSR.


Subject(s)
Cytidine Deaminase/genetics , DNA/genetics , Histone-Lysine N-Methyltransferase/genetics , Immunoglobulin Class Switching , Immunoglobulin Switch Region , Immunoglobulins/genetics , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Catalytic Domain , Cytidine Deaminase/immunology , DNA/immunology , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Gene Expression Regulation , Gene Silencing , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/immunology , Immunoglobulins/metabolism , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/immunology , Mice , Mice, Knockout , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombination, Genetic , Signal Transduction
6.
Nat Protoc ; 11(5): 853-71, 2016 May.
Article in English | MEDLINE | ID: mdl-27031497

ABSTRACT

Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.


Subject(s)
DNA Breaks, Double-Stranded , High-Throughput Nucleotide Sequencing/methods , Mammals/genetics , Animals , Cells, Cultured , Chromosomes/genetics , Computational Biology/methods , DNA, Single-Stranded , Deoxyribonucleases/genetics , Gene Library , Genome , Mice , Polymerase Chain Reaction/methods , Reproducibility of Results , Translocation, Genetic
7.
Nature ; 525(7567): 134-139, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26308889

ABSTRACT

During B-cell development, RAG endonuclease cleaves immunoglobulin heavy chain (IgH) V, D, and J gene segments and orchestrates their fusion as deletional events that assemble a V(D)J exon in the same transcriptional orientation as adjacent Cµ constant region exons. In mice, six additional sets of constant region exons (CHs) lie 100-200 kilobases downstream in the same transcriptional orientation as V(D)J and Cµ exons. Long repetitive switch (S) regions precede Cµ and downstream CHs. In mature B cells, class switch recombination (CSR) generates different antibody classes by replacing Cµ with a downstream CH (ref. 2). Activation-induced cytidine deaminase (AID) initiates CSR by promoting deamination lesions within Sµ and a downstream acceptor S region; these lesions are converted into DNA double-strand breaks (DSBs) by general DNA repair factors. Productive CSR must occur in a deletional orientation by joining the upstream end of an Sµ DSB to the downstream end of an acceptor S-region DSB. However, the relative frequency of deletional to inversional CSR junctions has not been measured. Thus, whether orientation-specific joining is a programmed mechanistic feature of CSR as it is for V(D)J recombination and, if so, how this is achieved is unknown. To address this question, we adapt high-throughput genome-wide translocation sequencing into a highly sensitive DSB end-joining assay and apply it to endogenous AID-initiated S-region DSBs in mouse B cells. We show that CSR is programmed to occur in a productive deletional orientation and does so via an unprecedented mechanism that involves in cis Igh organizational features in combination with frequent S-region DSBs initiated by AID. We further implicate ATM-dependent DSB-response factors in enforcing this mechanism and provide an explanation of why CSR is so reliant on the 53BP1 DSB-response factor.


Subject(s)
B-Lymphocytes/metabolism , Cytidine Deaminase/metabolism , DNA Breaks, Double-Stranded , DNA Repair/genetics , Immunoglobulin Class Switching/genetics , Immunoglobulin Constant Regions/genetics , Immunoglobulin Heavy Chains/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , B-Lymphocytes/enzymology , B-Lymphocytes/immunology , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Deamination , Mice , Sequence Deletion/genetics , Tumor Suppressor p53-Binding Protein 1 , VDJ Exons/genetics
8.
Nature ; 501(7465): 112-5, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23965619

ABSTRACT

The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy (IgH) and light (IgL) chain variable region exons from germline gene segments to generate primary antibody repertoires. IgH V(D)J assembly occurs in progenitor (pro-) B cells followed by that of IgL in precursor (pre-) B cells. Expression of IgH µ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR). Rag expression can continue in immature B cells, allowing continued Igκ V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity. This 'receptor editing' process, which can also lead to Igλ V(D)J recombination and expression, provides a mechanism whereby antigen encounter at the Rag-expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of Rag-expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor editing, Rag-expressing LP B-lineage cells have similar VH repertoires, but significantly different Vκ repertoires, compared to those of Rag2-expressing bone marrow counterparts. Moreover, colonization of germ-free mice leads to an increased ratio of Igλ-expressing versus Igκ-expressing B cells specifically in the LP. We conclude that B-cell development occurs in the intestinal mucosa, where it is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Lineage , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Animals , B-Lymphocytes/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Rearrangement, B-Lymphocyte/genetics , Germ-Free Life , Immunoglobulins/genetics , Immunoglobulins/immunology , Mice , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/metabolism , Symbiosis , Weaning
9.
Proc Natl Acad Sci U S A ; 109(34): 13745-50, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22869756

ABSTRACT

Induced pluripotent stem cells (iPSCs) can be formed from somatic cells by a defined set of genetic factors; however, aberrant epigenetic silencing of the imprinted Dlk1-Dio3 gene cluster often hinders their developmental potency and ability to contribute to high-grade chimerism in mice. Here, we describe an approach that allows splenic B cells activated to undergo Ig heavy-chain (IgH) class-switch recombination (CSR) to be reprogrammed into iPSCs that contribute to high-grade chimerism in mice. Treatment of naïve splenic B cells in culture with anti-CD40 plus IL-4 induces IgH CSR from IgM to IgG1 and IgE. CSR leads to irreversible IgH locus deletions wherein the IgM-producing Cµ exons are permanently excised from the B-cell genome. We find that anti-CD40 plus IL-4-activated B cells produce iPSCs that are uniformly hypermethylated in the imprinted Dlk1-Dio3 gene cluster and fail to produce chimerism in mice. However, treatment of activated B cells with the methyltransferase inhibitor 5-aza-2'-deoxycytidine before and at early stages of reprogramming attenuates hypermethylation of the Dlk1-Dio3 locus in resultant iPSCs and enables them to form high-grade chimerism in mice. These conditions allowed us to produce chimeric mice in which all mature B cells were derived entirely from IgG1-expressing B-cell-derived iPSCs. We conclude that culture conditions of activated B cells before and at early stages of reprogramming influence the developmental potency of resultant iPSCs.


Subject(s)
B-Lymphocytes/cytology , Immunoglobulin Heavy Chains/genetics , Induced Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Separation , Cytological Techniques , DNA-Binding Proteins/genetics , Flow Cytometry , Genetic Techniques , Genome , Immunoglobulin Class Switching , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...