Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 857: 147196, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36641075

ABSTRACT

Horn cancer is most devastating and prominent cancer in Indian zebu cattle that affects socio-economic condition of small-scale farmers who depends on their cattle for farm work. Development in the field for genomics through next generation sequencing and bioinformatics advancement have helped to identify genes which have a role in horn cancer development. Histopathological examination of cancerous tissues of horn revealed myxomatous changes, well, moderate and poorly differentiated squamous cell carcinoma. Differential gene expression analysis showed 40, 11, 66 and 29 upregulated genes and 10, 14, 08 and 07 down-regulated genes in myxomatous, well, moderate and poorly differentiated squamous cell carcinoma as compared to normal. Significant differentially expressed genes are related to cell development, cell proliferation, cell-cell communication, cell signaling and angiogenesis which are linked to Akt pathway, mTOR pathway and Wnt pathway. Activity of these genes and related pathways have already been established about their role in development of cancer. Among the candidate genes; keratin family, keratin family related gene, chemokine signaling and cytokines signaling associated genes could be a prominent target for the development of stage specific prognosis marker after further detailed study at large sample population level. CSTA, PTN, SPP1 genes have upregulation in all stages of cancer and they have enrolled as biomarkers for horn cancer.


Subject(s)
Carcinoma, Squamous Cell , Gene Expression Profiling , Animals , Cattle , Wnt Signaling Pathway/genetics , Up-Regulation , Cell Communication , Carcinoma, Squamous Cell/pathology , Transcriptome/genetics , Gene Expression Regulation, Neoplastic
2.
Sci Rep ; 11(1): 17457, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465845

ABSTRACT

The rhizosphere, a narrow zone of soil near plant roots, is a hot spot for microbial activity. Rhizosphere microbiota directly or indirectly benefit plants by supplementing nutrients, producing beneficial chemicals, or suppressing pathogens. Plants attract and modulate bacteria within the rhizosphere by releasing exudates. Plants also tend to select the rhizosphere microbiota based on their needs; a phenomenon termed as "rhizosphere effect". In this study, we characterized the rhizosphere microbiota of peanut plants across the crop development cycle from pre-sowing of seeds to post-harvest of crop under field conditions. The rhizosphere and bulk soil samples from different crop developmental stages were also compared. The composition of bulk soil microbiota resembled microbiota of pre-sowing and post-harvest soil and was markedly different from rhizosphere soil samples. Rhizosphere samples were enriched with multiple organisms mostly from the Proteobacteria, Firmicutes and Bacteroidota phyla. Differences in diversity were observed among the rhizosphere samples but not in bulk soil across different crop development stages. Pseudomonas_M indica was highly enriched during the germination of seeds. Furthermore, Plant Growth Promoting (PGP) bacteria like Bacillus were enriched during the middle stages of crop development but there was a decline in PGP organisms in the matured crop stage. We also observed a significant association of pH and Electrical Conductivity (EC) with the profiles of microbial community. Overall, this study portrayed the changes in rhizosphere microbiota of peanut during different developmental stages of crop and may help to design stage specific bio-strategies such as bio-fertilizer to improve crop yield.


Subject(s)
Arachis/microbiology , Bacteria/classification , Crops, Agricultural/microbiology , Microbiota , Plant Roots/microbiology , Rhizosphere , Seeds/chemistry , Bacteria/genetics , Bacteria/growth & development , Phylogeny , Soil Microbiology
3.
Sci Rep ; 11(1): 9400, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931716

ABSTRACT

In dromedary camels, which are pseudo-ruminants, rumen or C1 section of stomach is the main compartment involved in fiber degradation, as in true ruminants. However, as camels are adapted to the harsh and scarce grazing conditions of desert, their ruminal microbiota makes an interesting target of study. The present study was undertaken to generate the rumen microbial profile of Indian camel using 16S rRNA amplicon and shotgun metagenomics. The camels were fed three diets differing in the source of roughage. The comparative metagenomic analysis revealed greater proportions of significant differences between two fractions of rumen content followed by diet associated differences. Significant differences were also observed in the rumen microbiota collected at different time-points of the feeding trial. However, fraction related differences were more highlighted as compared to diet dependent changes in microbial profile from shotgun metagenomics data. Further, 16 genera were identified as part of the core rumen microbiome of Indian camels. Moreover, glycoside hydrolases were observed to be the most abundant among all Carbohydrate-Active enzymes and were dominated by GH2, GH3, GH13 and GH43. In all, this study describes the camel rumen microbiota under different dietary conditions with focus on taxonomic, functional, and Carbohydrate-Active enzymes profiles.


Subject(s)
Camelus/microbiology , Carbohydrate Metabolism , Diet , Enzymes/metabolism , Microbiota , Rumen/microbiology , Animals , Bacterial Proteins/metabolism
4.
BMC Vet Res ; 16(1): 461, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243240

ABSTRACT

BACKGROUND: Squamous Cell Carcinoma of horn, also known as horn cancer, is a prevailing type of cancer in cattles especially Bos indicus. It is one of the most prevalent disease in Indian bullocks often resulting in death and huge economic losses to farmers. Here, we have reported the use of targeted exome sequencing to identify variants present in horn cancer affected horn mucosa tissue and blood of the same animal to identify some of the prevalent markers of horn cancer. RESULTS: We have observed higher number of variants present in tissue as compared to blood as well as among cancer samples compared to samples from normal animals. Eighty six and 1437 cancer-specific variants were identified among the predicted variants in blood and tissue samples, respectively. Total 25 missense variants were observed distributed over 18 genes. KRT8 gene coding for Keratin8, one of the key constituents of horn, displayed 5 missense variants. Additionally, three other genes involved in apoptosis pathway and two genes involved in antigen presentation and processing also contained variants. CONCLUSIONS: Several genes involved in various apoptotic pathways were found to contain non-synonymous mutations. Keratin8 coding for Keratin, a chief constituent of horn was observed to have the highest number of mutations. In all, we present a preliminary report of mutations observed in horn cancer.


Subject(s)
Carcinoma, Squamous Cell/veterinary , High-Throughput Nucleotide Sequencing/veterinary , Horns/pathology , Animals , Apoptosis/genetics , Carcinoma, Squamous Cell/genetics , Cattle , Cattle Diseases/blood , Cattle Diseases/genetics , Cattle Diseases/pathology , India , Keratin-8/genetics , Male , Mutation
5.
3 Biotech ; 10(9): 414, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32983825

ABSTRACT

Here, we designed a custom panel targeting whole ß-casein gene SNPs of zebu and taurine cattle breeds to identify variants and applicability in dairy cattle genotyping. We sequenced two libraries consisting of different pools of primer sets from 95 individuals on the Illumina MiSeq. Consequently, over 92% target regions were amplified and 71 SNPs were available after quality filtering. Only three intronic variants were novel while majority of the identified variants were catalogued in dbSNP as known variants. Identified missense SNPs lead to variant A1/A2, B, F and A3, located in exon 7 only. For confirmation, A1/A2 locus was genotyped using PCR-RFLP. Variant B was observed in all animals, either in homozygous or in heterozygous form. Variants A1, F and A3 predicted to have a deleterious effect on protein function by decreasing the structural stability. Additionally, SIFT score revealed that the A1 variant might affect the protein function.

6.
3 Biotech ; 10(3): 92, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32089987

ABSTRACT

Horn cancer is most prevalent in Bos indicus and poorly defined genetic landscape makes disease diagnosis and treatment difficult. In this study, RNA-Seq and data analysis using CLC Genomics Workbench was employed to identify biomarkers associated with horn cancer. As a result, a total of 149 genes were found significant differentially expressed in horn cancer samples compared to horn normal samples. The study revealed 'keratins' and 'interleukins' as apex groups of significant differentially expressed genes (DEGs). Functional analysis showed that the upregulated keratins support metastasis of tumor via cell proliferation, migration, and affecting cell stability, while downregulated interleukins along with other associated chemokine receptors deprive the immune response to tumor posing clear path for metastasis of horn cancer. Combi-action of both the group facilitates the tumor microenvironment to reproduce tumorigenesis. Analysis of pathways enriched in DEGs and exemplified protein-protein interaction network indicated actual role of DEGs in horn cancer at a fine level. Important effect of deregulated expression of keratin and interleukin genes in horn cancer enrolling their candidacy as potential biomarkers for horn cancer prognosis. This study appraises the possibility to mitigate horn cancer at fine resolution to extract attainable identification of prognostic molecular portraits.

7.
Funct Integr Genomics ; 20(1): 75-87, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31368028

ABSTRACT

Long non-coding RNA (lncRNA) was previously considered as a non-functional transcript, which now established as part of regulatory elements of biological events such as chromosome structure, remodeling, and regulation of gene expression. The study presented here showed the role of lncRNA through differential expression analysis on cancer-related coding genes in horn squamous cell carcinoma of Indian zebu cattle. A total of 10,360 candidate lncRNAs were identified and further analyzed for its coding potential ability using three tools (CPC, CPAT, and PLEK) that provide 8862 common lncRNAs. Pfam analysis of these common lncRNAs gave 8612 potential candidates for lncRNA differential expression analysis. Differential expression analysis showed a total of 59 significantly differentially expressed genes and 19 lncRNAs. Pearson's correlation analysis was used to identify co-expressed mRNA-lncRNAs to established relation of the regulatory role of lncRNAs in horn cancer. We established a positive relation of seven upregulated (XLOC_000016, XLOC_002198, XLOC_002851, XLOC_ 007383, XLOC_010701, XLOC_010272, and XLOC_011517) and one downregulated (XLOC_011302) lncRNAs with eleven genes that are related to keratin family protein, keratin-associated protein family, cornifelin, corneodesmosin, serpin family protein, and metallothionein that have well-established role in squamous cell carcinoma through cellular communication, cell growth, cell invasion, and cell migration. These biological events were found to be related to the MAPK pathway of cell cycle regulation indicating the role of lncRNAs in manipulating cell cycle regulation during horn squamous cell carcinomas that will be useful in identifying molecular portraits related to the development of horn cancer.


Subject(s)
Cattle Diseases/genetics , Horns , Neoplasms/veterinary , RNA, Long Noncoding/metabolism , Animals , Cattle , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA, Long Noncoding/physiology , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction
8.
BMC Biotechnol ; 18(1): 9, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29439688

ABSTRACT

BACKGROUND: The aromatic residues of xylanase enzyme, W187, Y124, W144, Y128 and W63 of substrate binding pocket from Bacillus amyloliquefaciens were investigated for their role in substrate binding by homology modelling and sequence analysis. These residues are highly conserved and play an important role in substrate binding through steric hindrance. The substitution of these residues with alanine allows the enzyme to accommodate nonspecific substrates. RESULTS: Wild type and mutated genes were cloned and overexpressed in BL21. Optimum pH and temperature of rBAxn exhibited pH 9.0 and 50 °C respectively and it was stable up to 215 h. Along with the physical properties of rBAxn, kinetic parameters (Km 19.34 ± 0.72 mg/ml; kcat 6449.12 ± 155.37 min- 1 and kcat/Km 333.83 ± 6.78 ml min- 1 mg- 1) were also compared with engineered enzymes. Out of five mutations, W63A, Y128A and W144A lost almost 90% activity and Y124A and W187A retained almost 40-45% xylanase activity. CONCLUSIONS: The site-specific single mutation, led to alteration in substrate specificity from xylan to CMC while in case of double mutant the substrate specificity was altered from xylan to CMC, FP and avicel, indicating the role of aromatic residues on substrate binding, catalytic process and overall catalytic efficiency.


Subject(s)
Bacillus amyloliquefaciens/enzymology , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Amino Acid Substitution , Bacillus amyloliquefaciens/genetics , Binding Sites , Cellulose/metabolism , Cloning, Molecular , Detergents/chemistry , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/isolation & purification , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Metals/chemistry , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity , Xylans/metabolism
9.
Appl Biochem Biotechnol ; 174(7): 2504-15, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25224912

ABSTRACT

L-Asparaginase (3.5.1.1) is an enzyme widely used to treat the acute lymphoblastic leukemia. Two genes coding for L-asparaginase (ansA1 and ansA3) from Bacillus licheniformis MTCC 429 were cloned and overexpressed in Escherichia coli BL21 (DE3) cells. The recombinant proteins were purified to homogeneity by one-step purification process and further characterized for various biochemical parameters. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that both the enzymes are monomers of ∼37 kDa. Recombinant ansA1 was found to be highly unstable, and recombinant ansA3 was catalytically active and stable, which showed an optimum activity of 407.65 IU/mg at 37 °C and pH 8. Recombinant ansA3 showed higher substrate specificity for L-asparagine with negligible glutaminase activity. Kinetic parameters like K m , V max, k cat, and k cat/K m were calculated for recombinant ansA3.


Subject(s)
Asparaginase , Bacillus/enzymology , Escherichia coli/chemistry , Asparaginase/biosynthesis , Asparaginase/chemistry , Asparaginase/genetics , Asparaginase/isolation & purification , Asparagine , Bacillus/genetics , Catalysis , Escherichia coli/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...