Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(21): 22635-22649, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826516

ABSTRACT

The widespread use of malathion enhances agricultural plant productivity by eliminating pests, weeds, and diseases, but it may lead to serious environmental pollution and potential health risks for humans and animals. To mitigate these issues, environmentally friendly hydrogel adsorbents for malathion were synthesized using biodegradable polymers, specifically cellulose, ß-cyclodextrin (ß-CD), poly(vinyl alcohol) (PVA), and biobased epichlorohydrin as a cross-linker. This study investigated the effects of the cellulose-to-PVA ratio and epichlorohydrin (ECH) content on the properties and malathion adsorption capabilities of ß-CD/cellulose/PVA hydrogels. It was found that the gel content of the hydrogels increased with a higher cellulose-to PVA and ECH ratio, whereas the swelling ratio decreased, indicating a denser structure that impedes water permeation. In addition, various parameters affecting the malathion adsorption capacity of the hydrogel, namely, contact time, pH, hydrogel dosage, initial concentration of malathion, and temperature, were studied. The hydrogel prepared with a ß-CD/cellulose/PVA ratio of 20:40:40 and 9 mL of ECH exhibited the highest malathion adsorption rate and capacity, which indicated an equilibrium adsorption capacity of 656.41 mg g-1 at an initial malathion concentration of 1000 mg L-1. Fourier transform infrared spectroscopy (FTIR), ζ-potential, and X-ray photoelectron spectroscopy (XPS) and NMR spectroscopy confirmed malathion adsorption within the hydrogel. The adsorption process followed intraparticle diffusion kinetics and corresponded to Freundlich isotherms, indicating multilayer adsorption on heterogeneous substrates within the adsorbent, facilitated by diffusion.

2.
ACS Omega ; 5(5): 2334-2344, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32064395

ABSTRACT

Thermal treatment during catalyst preparation is one of the important factors affecting the characteristics and performance of a catalyst. To improve the catalytic performance of an alumina-supported copper catalyst prepared by an impregnation method for dimethyl ether (DME) synthesis from CO2, the effects of the use of hot air and infrared drying as well as calcination at 600 and 900 °C to prepare alumina supports were investigated. Infrared drying could shorten the required drying time by 75% when compared with hot air drying. Infrared drying could also help maintain the pore size and pore volume of the supports, leading to their larger surface areas. Different drying techniques were additionally noted to result in different sizes and shapes of the pores as well as to different copper distributions and intensities of acid sites of the catalyst. An increase in the calcination temperature resulted in a decrease in the surface area of the supports because of particle aggregation. The drying technique exhibited a more significant effect than calcination temperature on the space-time yield of DME. A catalyst utilizing the support prepared by infrared drying and then calcined at 600 °C exhibited the highest yield of DME (40.9 gDME kgcat -1 h-1) at a reaction temperature of 300 °C. Stability of the optimal catalyst, when monitored over a 24 h period, was noted to be excellent.

3.
ACS Omega ; 4(19): 18076-18086, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31720510

ABSTRACT

Deactivation of catalysts due to rapid blocking of active surfaces and pores is a major problem for methane cracking. The removal of the template using different calcination methods contributes to the different characteristics of catalyst support. Therefore, silica supports were prepared with the sol-gel method, where sodium silicate and chitosan are a silica source and a template, respectively. Calcination using a microwave muffle furnace (MWF) was preferred over the conventional electric muffle furnace at the heating rates of 2 and 17 °C/min (CEF2 and CEF17, respectively) in order to remove the chitosan template. A nickel nitrate precursor was loaded onto the obtained silica supports by the incipient wetness impregnation method. The properties of the silica support and the Ni/SiO2 catalysts were characterized by means of N2-sorption, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray, field emission transmission electron microscopy, and H2 temperature-programmed reduction. The catalytic activity was evaluated using a fixed-bed reactor at 550 °C with a CH4/N2 ratio of 1:4 in the feed. The amount and the allotropes of carbon deposited on the spent catalysts were investigated using thermogravimetric/differential thermal analysis. The results showed that the SiO2-MWF support had a higher surface area and a larger pore volume of a mesoporous structure with larger interparticle channels than that of the SiO2-CEF supports. This leads to the higher dispersion of Ni metal particles over and inside the interparticle channels of the SiO2-MWF support. This provided a higher metal-support interaction, resulting in lower rates of methane conversion and carbon deposition on the catalyst surface than those of Ni/SiO2-CEF catalysts. However, it displayed a lower bed pressure. It was found that the carbon fibers deposited on all the catalysts were multiwalled carbon nanotubes (MWCNTs). Additionally, the base-growth mechanism of MWCNTs was only exhibited by the Ni/SiO2-MWF catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...