Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35160645

ABSTRACT

The construction assembly and the repair of steel constructions painted with protective coatings are often carried out using arc welding. During the welding process, the coating in the weld zone is degrading. The protective coatings breakdown products are involved in the pore and non-metallic inclusion formation in the weld, the composition and distribution study of which makes it possible to analyze the reactions occurring during the welding. In this study, welding beads were deposited on the coated sheet surface by MAG welding. The distribution of inclusions (the average diameter and the relative content) along with the porosity in different bead zones were investigated by optical and scanning electron microscopy and digital image processing, and the chemical composition of inclusions was determined using energy-dispersive X-ray spectroscopy. The amount of diffusible hydrogen in the deposited metal was estimated with the vacuum method. In this work, four organosilicate coatings grades, differing in their purpose and heat resistance, were used, and their effect on the weld was studied.

2.
Materials (Basel) ; 14(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34771823

ABSTRACT

Friction Stir Welding (FSW) was utilized to butt-join 2024-T4 aluminum alloy plates of 1.9 mm thickness, using tools with conical and tapered hexagonal probe profiles. The characteristic effects of FSW using tools with tapered hexagonal probe profiles include an increase in the heat input and a significant modification of material flow, which have a positive effect on the metallurgical characteristics and mechanical performance of the weld. The differences in mechanical properties were interpreted through macrostructural changes and mechanical properties of the welded joints, which were supported by numerical simulation results on temperature distribution and material flow. The material flow resulting from the tapered hexagonal probe was more complicated than that of the conical probe. If in the first case, the dynamic viscosity and strain rate are homogeneously distributed around the probe, but in the case of the tapered hexagonal probe tool, the zones with maximum values of strain rates and minimum values of dynamic viscosity are located along the six tapered edges of the probe.

3.
Materials (Basel) ; 14(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068485

ABSTRACT

In wire arc additive manufacturing of Ti-alloy parts (Ti-WAAM) gas metal arc welding (GMAW) can be applied for complex parts printing. However, due to the specific properties of Ti, GMAW of Ti-alloys is complicated. In this work, three different types of metal transfer modes during Ti-WAAM were investigated: Cold Metal Transfer, controlled short circuiting metal transfer, and self-regulated metal transfer at a direct current with a negative electrode. Metal transfer modes were studied using captured waveform and high-speed video analysis. Using these modes, three walls were manufactured; the geometry preservation stability was estimated and compared using effective wall width calculation, the microstructure was analyzed using optical microscopy. Transfer process data showed that arc wandering depends not only on cathode spot instabilities, but also on anode processing properties. Microstructure analysis showed that each produced wall consists of phases and structures inherent for Ti-WAAM. α-basketweave in the center of and α-colony on the grain boundary of epitaxially grown ß-grains were found with heat affected zone bands along the height of the walls, so that the microstructure did not depend on metal transfer dramatically. However, the geometry preservation stability was higher in the wall, produced with controlled short circuiting metal transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...