Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 12(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36551116

ABSTRACT

Herein, we report a new conjugate BChl-S-S-NI based on the second-generation photosensitizer bacteriochlorin e6 (BChl) and a 4-styrylnaphthalimide fluorophore (NI), which is cleaved into individual functional fragments in the intracellular medium. The chromophores in the conjugate were cross-linked by click chemistry via a bis(azidoethyl)disulfide bridge which is reductively cleaved by the intracellular enzyme glutathione (GSH). A photophysical investigation of the conjugate in solution by using optical spectroscopy revealed that the energy transfer process is realized with high efficiency in the conjugated system, leading to the quenching of the emission of the fluorophore fragment. It was shown that the conjugate is cleaved by GSH in solution, which eliminates the possibility of energy transfer and restores the fluorescence of 4-styrylnaphthalimide. The photoinduced activity of the conjugate and its imaging properties were investigated on the mouse soft tissue sarcoma cell line S37. Phototoxicity studies in vitro show that the BChl-S-S-NI conjugate has insignificant dark cytotoxicity in the concentration range from 15 to 20,000 nM. At the same time, upon photoexcitation, it exhibits high photoinduced activity.


Subject(s)
Photochemotherapy , Porphyrins , Mice , Animals , Precision Medicine , Cell Line, Tumor , Photochemotherapy/methods , Porphyrins/chemistry , Fluorescent Dyes , Glutathione/chemistry
2.
Biosensors (Basel) ; 12(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36140155

ABSTRACT

Dyad compound NI-SP bearing 1,8-naphthalimide (NI) and styrylpyridine (SP) photoactive units, in which the N-phenylazadithia-15-crown-5 ether receptor is linked with the energy donor naphthalimide chromophore, has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In an aqueous solution, NI-SP selectively responds to the presence of Hg2+ via the enhancement in the emission intensity of NI due to the inhibition of the photoinduced electron transfer from the receptor to the NI fragment. At the same time, the long wavelength fluorescence band of SP, arising as a result of resonance energy transfer from the excited NI unit, appears to be virtually unchanged upon Hg2+ binding. This allows self-calibration of the optical response. The observed spectral behavior is consistent with the formation of the (NI-SP)·Hg2+ complex (dissociation constant 0.13 ± 0.04 µM). Bio-imaging studies showed that the ratio of fluorescence intensity in the 440-510 nm spectral region to that in the 590-650 nm region increases from 1.1 to 2.8 when cells are exposed to an increasing concentration of mercury (II) ions, thus enabling the detection of intracellular Hg2+ ions and their quantitative analysis in the 0.04-1.65 µM concentration range.


Subject(s)
Mercury , Naphthalimides , Ethers , Fluorescent Dyes/chemistry , Ions , Mercury/analysis , Naphthalimides/chemistry , Spectrometry, Fluorescence
3.
J Photochem Photobiol B ; 223: 112294, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34500215

ABSTRACT

Photo-induced cytotoxicity and antitumor activity of a series of dual function agents for photodynamic therapy (PDT) and fluorescent imaging based on bacteriochlorin photosensitizer conjugated with various naphthalimide fluorophores was studied in vitro using murine tumor cells of S37 sarcoma and in vivo on mice bearing murine S37 sarcoma. Upon irradiation at the absorption maximum of the photosensitizer, the activity of conjugates was as high as in the case of individual bacteriochlorin, while an additional excitation of the naphthalimide fragment led to an increase in the PDT efficacy due to resonance energy transfer from the fluorophore to photosensitizer. The fluorescence contrast and specific cytotoxic activity measurements indicate that the conjugate of bacteriochlorin with 3,4-dimethoxestyrene-substituted naphthalimide is the most promising agent for the application as theranostic in PDT.


Subject(s)
Naphthalimides/chemistry , Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Porphyrins/chemistry , Animals , Cell Line, Tumor , Lasers , Mice , Naphthalimides/metabolism , Neoplasms/diagnosis , Neoplasms/pathology , Optical Imaging , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Porphyrins/metabolism , Tissue Distribution , Transplantation, Homologous
4.
Sensors (Basel) ; 21(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440801

ABSTRACT

Bis(styryl) dye 1 bearing N-phenylazadithia-15-crown-5 ether receptor has been evaluated as a ratiometric fluorescent chemosensor for mercury (II) ions in living cells. In aqueous solution, probe 1 selectively responds to the presence of Hg2+ via the changes in the emission intensity as well as in the emission band shape, which is a result of formation of the complex with 1:1 metal to ligand ratio (dissociation constant 0.56 ± 0.15 µM). The sensing mechanism is based on the interplay between the RET (resonance energy transfer) and ICT (intramolecular charge transfer) interactions occurring upon the UV/Vis (380 or 405 nm) photoexcitation of both styryl chromophores in probe 1. Bio-imaging studies revealed that the yellow (500-600 nm) to red (600-730 nm) fluorescence intensity ratio decreased from 4.4 ± 0.2 to 1.43 ± 0.10 when cells were exposed to increasing concentration of mercury (II) ions enabling ratiometric quantification of intracellular Hg2+ concentration in the 37 nM-1 µM range.


Subject(s)
Fluorescent Dyes , Mercury , Crown Ethers , Ether , Humans , Ions , Mercury/toxicity
5.
Bioconjug Chem ; 30(3): 741-750, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30726065

ABSTRACT

A novel approach to the synthesis of pH-sensitive prodrugs has been proposed: thiourea drug modification. Resulting prodrugs can release the cytotoxic agent and the biologically active 2-thiohydantoin in the acidic environment of tumor cells. The concept of acid-catalyzed cyclization of thioureas to 2-thiohydantoins has been proven using a FRET model. Dual prodrugs of model azidothymidine, cytotoxic doxorubicin, and 2-thiohydantoin albutoin were obtained, which release the corresponding drugs in the acidic environment. The resulting doxorubicin prodrug was tested on prostate cancer cells and showed that the thiourea-modified prodrug is less cytotoxic (average IC50 ranging from 0.5584 to 0.9885 µM) than doxorubicin (IC50 ranging from 0.01258 to 0.02559 µM) in neutral pH 7.6 and has similar toxicity (average IC50 ranging from 0.4970 to 0.7994 µM) to doxorubicin (IC50 ranging from 0.2303 to 0.8110 µM) under mildly acidic conditions of cancer cells. Cellular and nuclear accumulation in PC3 tumor cells of Dox prodrug is much higher than accumulation of free doxorubicin.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Hydrogen-Ion Concentration , Prodrugs/pharmacology , Thiourea/chemistry , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Doxorubicin/chemistry , Fluorescein/chemistry , Fluorescence Resonance Energy Transfer , Humans , Male , Naphthalenes/chemistry , Prodrugs/chemistry , Prostatic Neoplasms/pathology
6.
Phys Chem Chem Phys ; 19(44): 30195-30206, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29105711

ABSTRACT

Propargyl-152,173-dimethoxy-131-amide of bacteriochlorin e (BChl) and a 4-(4-N,N-dimethylaminostyryl)-N-alkyl-1,8-naphthalimide bearing azide group in the N-alkyl fragment were conjugated by the copper(i)-catalyzed 1,3-dipolar cycloaddition to produce a novel dyad compound BChl-NI for anticancer photodynamic therapy (PDT) combining the modalities of a photosensitizer (PS) and a fluorescence imaging agent. A precise photophysical investigation of the conjugate in solution using steady-state and time-resolved optical spectroscopy revealed that the presence of the naphthalimide (NI) fragment does not decrease the photosensitizing ability of the bacteriochlorin (BChl) core as compared with BChl; however, the fluorescence of naphthalimide is completely quenched due to resonance energy transfer (RET) to BChl. It has been shown that the BChl-NI conjugate penetrates into human lung adenocarcinoma A549 cells, and accumulates in the cytoplasm where it has a mixed granular-diffuse distribution. Both NI and BChl fluorescence in vitro provides registration of bright images showing perfectly intracellular distribution of BChl-NI. The ability of NI to emit light upon excitation in imaging experiments has been found to be due to hampering of RET as a result of photodestruction of the energy acceptor BChl unit. Phototoxicity studies have shown that the BChl-NI conjugate is not toxic for A549 cells at tested concentrations (<8 µM) without light-induced activation. At the same time, the concentration-dependent killing of cells is observed upon the excitation of the bacteriochlorin moiety with red light that occurs due to reactive oxygen species formation. The presented data demonstrate that the BChl-NI conjugate is a promissing dual function agent for cancer diagnostics and therapy.

7.
Phys Chem Chem Phys ; 19(2): 1244-1256, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27966696

ABSTRACT

The photophysical properties of naphthalimide dyes NI1-3 with electron releasing 4-methoxy- (NI1), 3,4-dimethoxystyryl- (NI2) and dimethylaminostyryl (NI3) groups are examined in a variety of protic and aprotic solvents. All compounds demonstrate positive solvatochromism in the steady-state absorption and fluorescence spectra. The analysis of the dependence of the Stokes shift on the polarity of the solvent using the Lippert-Mataga equation allowed us to determine the change in the dipole moment upon excitation. The obtained data correspond to the formation of highly polar charge transfer states. Based on the transient absorption spectra and time-resolved fluorescence measurements, the presence of two different emissive states was definitely proved. The primarily formed planar Local Excited (LE) state dominates in non-polar solvents like cyclohexane and toluene where it relaxes mostly through fluorescence and E,Z-isomerisation pathways. In polar solvents, an alternative relaxation channel emerges that consists of twisting around single bond between styryl and naphthalimide fragments, which leads to the formation of a Twisted Intramolecular Charge Transfer (TICT) state. The factors affecting the fluorescence of TICT states are discussed. The observed spectral effects are rationalized using quantum-chemical calculations, X-ray data and NMR spectroscopy.

8.
Chemistry ; 22(42): 15069-15074, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27592858

ABSTRACT

A receptor containing amidopyrrole binding subunits and free amino groups, conjugated to a naphthalimide dye, has been designed and synthesized. The intrinsic selectivity of the binding motif for phosphate present in DMSO completely disappears in 10 % DMSO aqueous buffer at pH 3.6, at which the receptor is protonated. The electrostatic interactions between the receptor and an anion start to dominate, thus leading to selectivity for sulfate. The ability of the HSO4- anion to transfer the proton to the amino group during the recognition event suppresses the photoinduced electron transfer (PET) on the dye, resulting in a selective turn-on fluorescent response. The choice of pH of the solution for sensing is dictated by the pKa value of the dye.

9.
Phys Chem Chem Phys ; 17(35): 22749-57, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26256636

ABSTRACT

Novel bi-chromophoric naphthalimide derivatives containing benzo-15-crown-5 and N-phenyl-aza-15-crown-5 receptor moieties BNI2 and BNI3 were designed and prepared. Significant Förster resonance energy transfer (FRET) from donor (D) amido-naphthalimide to acceptor (A) amino-naphthalimide chromophores as well as photoinduced electron transfer (PET) between the N-aryl receptor and amido-naphthalimide fragment was revealed by the steady-state and time-resolved UV/Vis absorption and fluorescence spectroscopy. Upon the addition of alkaline-earth metal perchlorates to an acetonitrile solution of ligands, FRET mediated fluorescence enhancement was observed, which was a result of inhibition of the PET competitive deactivation pathway. The studied compounds provide an opportunity to register a two-channel fluorescence response upon selective excitation of either of the photoactive units and, thus, might be of interest as ratiometric probes.

10.
J Photochem Photobiol B ; 133: 140-4, 2014 Apr 05.
Article in English | MEDLINE | ID: mdl-24727406

ABSTRACT

Two novel bis(chromophoric) dyads ABPI-NI1 and ABPI-NI2 containing 1,8-naphthalimide and bacteriopurpurinimide units linked by p-phenylene-methylene (ABPI-NI1) and pentamethylene (ABPI-NI2) spacers were prepared to test their ability to be used in the design of effective agents for both photodynamic therapy (PDT) and fluorescent tumor imaging. Photophysical studies revealed that the emission from the naphthalimide chromophore in both conjugates was partially quenched due to resonance energy transfer between the photoactive components. Compound ABPI-NI2 with more sterically flexible oligomethylene group demonstrated higher fluorescence intensity as compared with that for ABPI-NI1.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Naphthalimides/chemistry , Porphyrins/chemistry , Humans , Naphthalimides/chemical synthesis , Naphthalimides/therapeutic use , Neoplasms/diagnosis , Neoplasms/drug therapy , Photochemotherapy , Porphyrins/chemical synthesis , Porphyrins/therapeutic use , Quantum Theory
11.
J Phys Chem A ; 114(12): 4118-22, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20184332

ABSTRACT

The investigation of N-phenyl-4-amino- and N-phenyl-4-acetamido-1,8-naphthalimides containing N-benzo-15-crown-5 ether substituent showed that the presence of ionophoric fragment as N-substituent in naphthalimide molecule provides the design of compound possessing the properties of fluorescent receptor. The addition of metal cations does not change the position of absorption and emission bands but substantial increases the fluorescence intensity. The study of molecules included the theoretical and experimental (optical, NMR) methods, analysis of intramolecular charge (electron) transfer and fluorescence properties in the presence and absence of metal ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...