Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Stem Cells Dev ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38770821

ABSTRACT

Tendons are frequently injured and have limited regenerative capacity. This motivates tissue engineering efforts aimed at restoring tendon function through strategies to direct functional tendon formation. Generation of a crosslinked collagen matrix is paramount to forming mechanically functional tendon. However, it is unknown how lysyl oxidase (LOX), the primary mediator of enzymatic collagen crosslinking, is regulated by stem cells. This study investigates how multiple factors previously identified to promote tendon formation and healing (transforming growth factor [TGF]ß1 and TGFß2, mechanical stimuli, and hypoxia-inducible factor [HIF]-1α) regulate LOX production in the murine C3H10T1/2 mesenchymal stem cell (MSC) line. We hypothesized that TGFß signaling promotes LOX activity in C3H10T1/2 MSCs, which is regulated by both mechanical stimuli and HIF-1α activation. TGFß1 and TGFß2 increased LOX levels as a function of concentration and time. Inhibiting the TGFß type I receptor (TGFßRI) decreased TGFß2-induced LOX production by C3H10T1/2 MSCs. Low (5 mPa) and high (150 mPa) magnitudes of fluid shear stress were applied to test impacts of mechanical stimuli, but without TGFß2, loading alone did not alter LOX levels. Low loading (5 mPa) with TGFß2 increased LOX at 7 days greater than TGFß2 treatment alone. Neither HIF-1α knockdown (siRNA) nor activation (CoCl2) affected LOX levels. Ultimately, results suggest that TGFß2 and appropriate loading magnitudes contribute to LOX production by C3H10T1/2 MSCs. Potential application of these findings includes treatment with TGFß2 and appropriate mechanical stimuli to modulate LOX production by stem cells to ultimately control collagen matrix stiffening and support functional tendon formation.

2.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014288

ABSTRACT

There is limited understanding of how mechanical signals regulate tendon development. The nucleus has emerged as a major regulator of cellular mechanosensation, via the linker of nucleoskeleton and cytoskeleton (LINC) protein complex. Specific roles of LINC in tenogenesis have not been explored. In this study, we investigate how LINC regulates tendon development by disabling LINC-mediated mechanosensing via dominant negative (dn) expression of the Klarsicht, ANC-1, and Syne Homology (KASH) domain, which is necessary for LINC to function. We hypothesized that LINC regulates mechanotransduction in developing tendon, and that disabling LINC would impact tendon mechanical properties and structure in a mouse model of dnKASH. We used Achilles (AT) and tail (TT) tendons as representative energy-storing and limb-positioning tendons, respectively. Mechanical testing at postnatal day 10 showed that disabling the LINC complex via dnKASH significantly impacted tendon mechanical properties and cross-sectional area, and that effects differed between ATs and TTs. Collagen crimp distance was also impacted in dnKASH tendons, and was significantly decreased in ATs, and increased in TTs. Overall, we show that disruption to the LINC complex specifically impacts tendon mechanics and collagen crimp structure, with unique responses between an energy-storing and limb-positioning tendon. This suggests that nuclear mechanotransduction through LINC plays a role in regulating tendon formation during neonatal development.

3.
HardwareX ; 11: e00253, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35509920

ABSTRACT

The physiological oxygen levels for several mammalian cell types in vivo are considered to be hypoxic (low oxygen tension), but the vast majority of in vitro mammalian cell culture is conducted at atmospheric oxygen levels of around 21%. In order to understand the impact of low oxygen environments on cells, oxygen levels need to be regulated during in vitro culture. Two common methods for simulating a hypoxic environment are through the regulation of gas composition or chemical induction. Chemically mimicking hypoxia can have adverse effects such as reducing cell viability, making oxygen regulation in cell culture chambers crucial for long-term culture. However, oxygen-regulating cell culture incubators and commercial hypoxia chambers may not always be a viable option due to cost and limited customization. Other low-cost chambers have been developed, but they tend to lack control systems or are fairly small scale. Thus, the objective of this project was to design and develop a low-cost, open-source, controllable, and reproducible hypoxia chamber that can fit inside a standard cell culture incubator. This design allows for the control of O2 between 1 and 21%, while maintaining CO2 levels at 5%, as well as monitoring of temperature, pressure, and relative humidity. Testing showed our hypoxia chamber was able to maintain CO2 levels at 5% and hypoxic O2 levels at 1% and 5% for long-term cell culture. This simple and easy-to-manufacture design uses off the shelf components, and the total material cost was $832.47 (USD).

4.
J Biomech Eng ; 143(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-33537729

ABSTRACT

Mechanical loading may be required for proper tendon formation. However, it is not well understood how tendon formation is impacted by the development of weight-bearing locomotor activity in the neonate. This study assessed tendon mechanical properties, and concomitant changes in weight-bearing locomotion, in neonatal rats subjected to a low thoracic spinal cord transection or a sham surgery at postnatal day (P)1. On P10, spontaneous locomotion was evaluated in spinal cord transected and sham controls to determine impacts on weight-bearing hindlimb movement. The mechanical properties of P10 Achilles tendons (ATs), as representative energy-storing, weight-bearing tendons, and tail tendons (TTs), as representative positional, non-weight-bearing tendons were evaluated. Non- and partial weight-bearing hindlimb activity decreased in spinal cord transected rats compared to sham controls. No spinal cord transected rats showed full weight-bearing locomotion. ATs from spinal cord transected rats had increased elastic modulus, while cross-sectional area trended lower compared to sham rats. TTs from spinal cord transected rats had higher stiffness and cross-sectional area. Collagen structure of ATs and TTs did not appear impacted by surgery condition, and no significant differences were detected in the collagen crimp pattern. Our findings suggest that mechanical loading from weight-bearing locomotor activity during development regulates neonatal AT lateral expansion and maintains tendon compliance, and that TTs may be differentially regulated. The onset and gradual increase of weight-bearing movement in the neonate may provide the mechanical loading needed to direct functional postnatal tendon formation.


Subject(s)
Tail , Animals , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...