Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38978604

ABSTRACT

Type 2 Diabetes (T2D) is a condition that is often associated with obesity and defined by reduced sensitivity of PI3K signaling to insulin (insulin resistance), hyperinsulinemia and hyperglycemia. Molecular causes and early signaling events underlying insulin resistance are not well understood. Insulin activation of PI3K signaling causes mTOR dependent induction of PTEN translation, a negative regulator of PI3K signaling. We speculated that insulin resistance is due to insulin dependent induction of PTEN protein that prevent further increases in PI3K signaling. Here we show that in a diet induced model of obesity and insulin resistance, PTEN levels are increased in fat, muscle and liver tissues. Onset of hyperinsulinemia and PTEN induction in tissue is followed by hyperglycemia, hepatic steatosis and severe glucose intolerance. Treatment with a PTEN phosphatase inhibitor prevents and reverses these phenotypes, whereas an mTORC1 kinase inhibitor reverses all but the hepatic steatosis. These data suggest that induction of PTEN by increasing levels of insulin elevates feedback inhibition of the pathway to a point where downstream PI3K signaling is reduced and hyperglycemia ensues. PTEN induction is thus necessary for insulin resistance and the type 2 diabetes phenotype and a potential therapeutic target.

2.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659913

ABSTRACT

BRAFV600E mutation occurs in 46% of melanomas and drives high levels of ERK activity and ERK-dependent proliferation. However, BRAFV600E is insufficient to drive melanoma in GEMM models, and 82% of human benign nevi harbor BRAFV600E mutations. We show here that BRAFV600E inhibits mesenchymal migration by causing feedback inhibition of RAC1 activity. ERK pathway inhibition induces RAC1 activation and restores migration and invasion. In cells with BRAFV600E, mutant RAC1, overexpression of PREX1, PREX2, or PTEN inactivation restore RAC1 activity and cell motility. Together, these lesions occur in 48% of BRAFV600E melanomas. Thus, although BRAFV600E activation of ERK deregulates cell proliferation, it prevents full malignant transformation by causing feedback inhibition of cell migration. Secondary mutations are, therefore, required for tumorigenesis. One mechanism underlying tumor evolution may be the selection of lesions that rescue the deleterious effects of oncogenic drivers.

3.
EMBO Mol Med ; 12(8): e11592, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32609955

ABSTRACT

Immunity to fungal infections is mediated by cells of the innate and adaptive immune system including Th17 cells. Ca2+ influx in immune cells is regulated by stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. We here identify patients with a novel mutation in STIM1 (p.L374P) that abolished Ca2+ influx and resulted in increased susceptibility to fungal and other infections. In mice, deletion of STIM1 in all immune cells enhanced susceptibility to mucosal C. albicans infection, whereas T cell-specific deletion of STIM1 impaired immunity to systemic C. albicans infection. STIM1 deletion impaired the production of Th17 cytokines essential for antifungal immunity and compromised the expression of genes in several metabolic pathways including Foxo and HIF1α signaling that regulate glycolysis and oxidative phosphorylation (OXPHOS). Our study further revealed distinct roles of STIM1 in regulating transcription and metabolic programs in non-pathogenic Th17 cells compared to pathogenic, proinflammatory Th17 cells, a finding that may potentially be exploited for the treatment of Th17 cell-mediated inflammatory diseases.


Subject(s)
Calcium , Th17 Cells , Animals , Antifungal Agents , Calcium/metabolism , Calcium Channels/genetics , Humans , Mice , Neoplasm Proteins , ORAI1 Protein , Stromal Interaction Molecule 1/genetics , Th17 Cells/metabolism
4.
Cancer Discov ; 10(9): 1296-1311, 2020 09.
Article in English | MEDLINE | ID: mdl-32371478

ABSTRACT

The molecular mechanisms leading to resistance to PD-1 blockade are largely unknown. Here, we characterize tumor biopsies from a patient with melanoma who displayed heterogeneous responses to anti-PD-1 therapy. We observe that a resistant tumor exhibited a loss-of-function mutation in the tumor suppressor gene FBXW7, whereas a sensitive tumor from the same patient did not. Consistent with a functional role in immunotherapy response, inactivation of Fbxw7 in murine tumor cell lines caused resistance to anti-PD-1 in immunocompetent animals. Loss of Fbxw7 was associated with altered immune microenvironment, decreased tumor-intrinsic expression of the double-stranded RNA (dsRNA) sensors MDA5 and RIG1, and diminished induction of type I IFN and MHC-I expression. In contrast, restoration of dsRNA sensing in Fbxw7-deficient cells was sufficient to sensitize them to anti-PD-1. Our results thus establish a new role for the commonly inactivated tumor suppressor FBXW7 in viral sensing and sensitivity to immunotherapy. SIGNIFICANCE: Our findings establish a role of the commonly inactivated tumor suppressor FBXW7 as a genomic driver of response to anti-PD-1 therapy. Fbxw7 loss promotes resistance to anti-PD-1 through the downregulation of viral sensing pathways, suggesting that therapeutic reactivation of these pathways could improve clinical responses to checkpoint inhibitors in genomically defined cancer patient populations.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
Drug Resistance, Neoplasm/genetics , F-Box-WD Repeat-Containing Protein 7/genetics , Immune Checkpoint Inhibitors/pharmacology , Skin Neoplasms/drug therapy , Aged , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Cell Line, Tumor/transplantation , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Disease Models, Animal , F-Box-WD Repeat-Containing Protein 7/metabolism , Gene Expression Regulation, Neoplastic/immunology , HeLa Cells , Humans , Immune Checkpoint Inhibitors/therapeutic use , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Loss of Function Mutation , Male , Mice , Mutagenesis, Site-Directed , Programmed Cell Death 1 Receptor/antagonists & inhibitors , RNA, Double-Stranded/immunology , RNA, Double-Stranded/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
5.
Macromol Biosci ; 17(8)2017 08.
Article in English | MEDLINE | ID: mdl-28485094

ABSTRACT

Upper Gastrointestinal Cancers (UGCs) are a leading cause of cancer-related deaths worldwide. Paclitaxel (PTX) is frequently used for the treatment of UGCs; however, low bioavailability, reduced solubility, and dose-dependent toxicity impede its therapeutic use. PAMAMG4.0 -NH2 -DHA is synthesized by linking amine-terminated fourth-generation poly(amidoamine) (PAMAMG4.0 -NH2 ) dendrimers with omega-3 fatty acid docosahexaenoic acid (DHA). Next, PAMAMG4.0 -NH2 -DHA-PTX (DHATX) and PAMAMG4.0 -NH2 -PTX (PAX) conjugates are synthesized by subsequent covalent binding of PTX with PAMAMG4.0 -NH2 -DHA and PAMAMG4.0 -NH2 , respectively. 1 H-NMR and MALDI-TOF analyses are performed to confirm conjugation of DHA to PAMAMG4.0 -NH2 and PTX to PAMAMG4.0 -NH2 -DHA. The cell viability, clonogenic cell survival, and flow cytometry analyses are used to determine the anticancer activity of PTX, PAX, and DHATX in UGC cell lines. The in vitro data indicate that treatment with DHATX is significantly more potent than PTX or PAX at inhibiting cellular proliferation, suppressing long-term survival, and inducing cell death in UGC cells.


Subject(s)
Dendrimers , Drug Delivery Systems , Fatty Acids, Omega-3 , Gastrointestinal Neoplasms/drug therapy , Paclitaxel , Cell Line, Tumor , Dendrimers/chemical synthesis , Dendrimers/chemistry , Dendrimers/pharmacology , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/pharmacology , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Humans , Paclitaxel/chemistry , Paclitaxel/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...