Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(48): 485602, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-32931461

ABSTRACT

The droplet contact angle and morphology of the growth interface (vertical, tapered or truncated facets) are known to affect the zincblende (ZB) or wurtzite (WZ) crystal phase of III-V nanowires (NWs) grown by the vapor-liquid-solid method. Here, we present a model which describes the dynamics of the morphological evolution in self-catalyzed III-V NWs in terms of the time-dependent (or length-dependent) contact angle or top nanowire radius under varying material fluxes. The model fits quite well the contact angle dynamics obtained by in situ growth monitoring of self-catalyzed GaAs NWs in a transmission electron microscope. These results can be used for modeling the interface dynamics and the related crystal phase switching and for obtaining ZB-WZ heterostructures in III-V.

2.
Nat Mater ; 14(8): 820-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26168344

ABSTRACT

Nanowire growth by the vapour-liquid-solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a 'mixing bowl', in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...