Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015529

ABSTRACT

The impact of fillers in the epoxy oligomer on the test culture of the marine ecosystem was investigated. The content of additive-biocides-was selected based on the complex research using STAT-GRAPHICS® Centurion XVI. The ecotoxicity of composite surfaces was determined in model systems using methods which are standard in eco-microbiology. The microorganism was identified by studying morphological, cultural, biochemical, and antigenic properties. Studies of the structure and the microrelief of the surfaces of composite materials were conducted using scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy. Based on comprehensive research, it was established that the composition of oxytetracycline with content of q = 1.5 wt% and nanosilver with a content of q = 0.075 wt% per 100 wt% of the DER-331 oligomer and 10 parts by the mass of the TETA hardener ensures the formation of a porous nano-heterogeneous structure of the coating, which leads to the acceleration of the release of silver ions from the surface of the polymer. The rational content of the complex additives of biocides ensures adhesion to the cell wall of bacteria with subsequent penetration into it and subsequent change to the cell membrane, its death, and, therefore, the suppression of the fouling process of metal structures.

2.
Materials (Basel) ; 15(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35160770

ABSTRACT

The article aims to use the generated sound as operational information needed for adaptive control of the metalworking process and early monitoring and diagnosis of the condition of the machined materials using a newly introduced surface roughness quality index due to the sound-controlled machining process. The object of the measurement was correlation between the sound intensity generated during cutting and the material parameters of the machined surface, i.e., the roughness of the machined surface and the degree of wear of the cutting tool. The roughness was measured during longitudinal turning of a steel billet with a P25 insert made of 12X18H10T steel and a T15K6 cutting insert made of a titanium, cobalt, and tungsten group alloy. The correlation between the sound and roughness of the machined surface was 0.93, whereas between the sound and wear of the cutting tool was 0.93. The correlation between sound and tool wear in the experiment with P25 and T15K6 cutting inserts and the correlation between sound and roughness is positive.

3.
Article in English | MEDLINE | ID: mdl-32456216

ABSTRACT

Iron is an essential trace element, but at high doses, this element may pose a health risk. Wastewater from iron ore mining, steel production, and metal processing, among other heavy metals, also contains high concentrations of iron (Fe3+). The use of sorption on natural materials is a potential alternative to conventional methods for removing iron ions, also because of low cost. The methods presented in this article are based on the study of kinetic properties and the acquisition of adsorption isotherms, which are one of the most important characteristics of adsorption mechanisms. The course of sorption is analyzed according to the Freundlich sorption isotherm model. Isotherm parameters are evaluated using experimental results of ferric cation sorption. The results presented relate to the investigation of natural zeolite-clinoptilolite as a ferric cation sorbent, providing a measurement of the sorption kinetics as well as the observed sorption parameters of iron cations from aqueous media. The optimal time for equilibrium in the adsorption system is determined from the kinetic dependencies. The dependence of the achieved equilibrium concentration on the initial concentration of the solution was also expressed, both graphically and analytically. The new prediction model was compared with the traditional Freundlich model. Finally, adsorption isotherms tested under laboratory conditions for a practical application can be recommended for the preliminary examination of the possible technological use of natural zeolite in the wastewater treatment process.


Subject(s)
Iron , Water Pollutants, Chemical , Adsorption , Cations , Hydrogen-Ion Concentration , Kinetics , Solutions , Water , Zeolites
4.
Article in English | MEDLINE | ID: mdl-31906533

ABSTRACT

The paper presents the results of the development of the cardio-forecasting technology, which introduces a new method to monitor the state of human-operator, which is characteristic for the given production conditions and for individual operators, to predict the moment of exhaustion of his/her working capacity. The work aims to demonstrate the unique, distinctive features of the cardio-forecasting technology for predicting an individual limit of his/her working capacity for each person. A unique methodology for predicting individually for each person the moment when he/she reaches the limit of his/her working capacity is based on a spectral analysis of a human phonocardiogram in order to isolate the frequency component located at the heart contraction frequency. The trend of the amplitude of this component is approximated by its model; consequently, the coefficients of the trend model are determined. They include the operator's operating time until his/her working capacity is exhausted. A methodology for predicting the moment when he/she reaches the limit of his/her working capacity for each person individually and assessment based on this degree of criticality of their condition will be realized as a software application for smartphones using the Android operating system.


Subject(s)
Forecasting , Heart/physiology , Monitoring, Physiologic , Female , Humans , Male
5.
Article in English | MEDLINE | ID: mdl-29958466

ABSTRACT

This paper from the field of environmental chemistry offers an innovative use of sorbents in the treatment of waste industrial water. Various industrial activities, especially the use of technological fluids in machining, surface treatment of materials, ore extraction, pesticide use in agriculture, etc., create wastewater containing dangerous metals that cause serious health problems. This paper presents the results of studies of the natural zeolite clinoptilolite as a sorbent of copper cations. These results provide the measurement of the sorption kinetics as well as the observed parameters of sorption of copper cations from the aquatic environment to the clinoptilolite from a promising Slovak site. The effectiveness of the natural sorbent is also compared with that of certain known synthetic sorbents.


Subject(s)
Cations/chemistry , Copper/chemistry , Environmental Restoration and Remediation/methods , Industrial Waste , Wastewater/chemistry , Water Purification/methods , Zeolites/chemistry , Adsorption , Kinetics , Slovakia
6.
Materials (Basel) ; 10(9)2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28832526

ABSTRACT

This work evaluates the possibility of identifying mechanical parameters, especially upper and lower yield points, by the analytical processing of specific elements of the topography of surfaces generated with abrasive waterjet technology. We developed a new system of equations, which are connected with each other in such a way that the result of a calculation is a comprehensive mathematical-physical model, which describes numerically as well as graphically the deformation process of material cutting using an abrasive waterjet. The results of our model have been successfully checked against those obtained by means of a tensile test. The main prospect for future applications of the method presented in this article concerns the identification of mechanical parameters associated with the prediction of material behavior. The findings of this study can contribute to a more detailed understanding of the relationships: material properties-tool properties-deformation properties.

7.
Materials (Basel) ; 10(4)2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28772733

ABSTRACT

The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer-solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.

SELECTION OF CITATIONS
SEARCH DETAIL
...