Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Inform Decis Mak ; 24(1): 119, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711099

ABSTRACT

The goal is to enhance an automated sleep staging system's performance by leveraging the diverse signals captured through multi-modal polysomnography recordings. Three modalities of PSG signals, namely electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG), were considered to obtain the optimal fusions of the PSG signals, where 63 features were extracted. These include frequency-based, time-based, statistical-based, entropy-based, and non-linear-based features. We adopted the ReliefF (ReF) feature selection algorithms to find the suitable parts for each signal and superposition of PSG signals. Twelve top features were selected while correlated with the extracted feature sets' sleep stages. The selected features were fed into the AdaBoost with Random Forest (ADB + RF) classifier to validate the chosen segments and classify the sleep stages. This study's experiments were investigated by obtaining two testing schemes: epoch-wise testing and subject-wise testing. The suggested research was conducted using three publicly available datasets: ISRUC-Sleep subgroup1 (ISRUC-SG1), sleep-EDF(S-EDF), Physio bank CAP sleep database (PB-CAPSDB), and S-EDF-78 respectively. This work demonstrated that the proposed fusion strategy overestimates the common individual usage of PSG signals.


Subject(s)
Electroencephalography , Electromyography , Electrooculography , Machine Learning , Polysomnography , Sleep Stages , Humans , Sleep Stages/physiology , Adult , Male , Female , Signal Processing, Computer-Assisted
2.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571713

ABSTRACT

Brain tumor detection in the initial stage is becoming an intricate task for clinicians worldwide. The diagnosis of brain tumor patients is rigorous in the later stages, which is a serious concern. Although there are related pragmatic clinical tools and multiple models based on machine learning (ML) for the effective diagnosis of patients, these models still provide less accuracy and take immense time for patient screening during the diagnosis process. Hence, there is still a need to develop a more precise model for more accurate screening of patients to detect brain tumors in the beginning stages and aid clinicians in diagnosis, making the brain tumor assessment more reliable. In this research, a performance analysis of the impact of different generative adversarial networks (GAN) on the early detection of brain tumors is presented. Based on it, a novel hybrid enhanced predictive convolution neural network (CNN) model using a hybrid GAN ensemble is proposed. Brain tumor image data is augmented using a GAN ensemble, which is fed for classification using a hybrid modulated CNN technique. The outcome is generated through a soft voting approach where the final prediction is based on the GAN, which computes the highest value for different performance metrics. This analysis demonstrated that evaluation with a progressive-growing generative adversarial network (PGGAN) architecture produced the best result. In the analysis, PGGAN outperformed others, computing the accuracy, precision, recall, F1-score, and negative predictive value (NPV) to be 98.85, 98.45%, 97.2%, 98.11%, and 98.09%, respectively. Additionally, a very low latency of 3.4 s is determined with PGGAN. The PGGAN model enhanced the overall performance of the identification of brain cell tissues in real time. Therefore, it may be inferred to suggest that brain tumor detection in patients using PGGAN augmentation with the proposed modulated CNN technique generates the optimum performance using the soft voting approach.


Subject(s)
Brain Neoplasms , Deep Learning , Humans , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Benchmarking , Intelligence
SELECTION OF CITATIONS
SEARCH DETAIL
...