Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biofouling ; 39(8): 853-866, 2023.
Article in English | MEDLINE | ID: mdl-37965754

ABSTRACT

In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (Navicula sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the Navicula sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.


Subject(s)
Biofilms , Diatoms , Bacteria , Stainless Steel , Hydrophobic and Hydrophilic Interactions
2.
NanoImpact ; 22: 100324, 2021 04.
Article in English | MEDLINE | ID: mdl-34622091

ABSTRACT

Nanoparticles under a reactive microenvironment, have the propensity to undergo morphological and compositional changes, which can translate into band edge widening. Although cell membrane depolarization has been linked with the electronic band structure of nanomaterials in their native state, the change in band structure as a consequence of a soluble nanoparticle system is less studied. Therefore we studied the consequence of dissolution of CuO nanoparticles on the band structure and flat band potentials and correlated it with its ability to induce a intracellular oxidative stress. The temporal variation in bandgap, fermi energy level and valence band maxima were evaluated on the remnant CuO nanoparticles post dissolution. CuO nanoparticles showed a very high dissolution in simulated body fluid (51%) and cell culture media (75%). This dissolution resulted in an in situ physico-chemical transformation of CuO nanoparticles. A temporal increase in the bandgap energy as a result of media interaction was up to 107%. Temporal variation in the flat band potentials with the generation of intracellular ROS, cell viability, late and early apoptosis in addition to necrosis on RAW 264.7 cells was established due to biological redox potential overlap. The mRNA expression for TNF-α, IL-6, IL-1ß and IL-10 in response to the particle treatment was also evalulated for 6 hours. Through this study, we establish that the toxicological potential of CuO nanoparticles is a temporal function of band energies (its overlap with the intracellular redox potential) followed by release of ionic species in the cytotoxic regime.


Subject(s)
Copper , Nanoparticles , Copper/chemistry , Nanoparticles/toxicity , Oxidative Stress , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...